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B. INTRODUCTION

Interval-censored (IC) data are encountered in three areas of breast cancer research.
The most common application is in clinical relapse follow-up studies in which the study
endpoint is disease-free survival. When a patient relapses, it is usually known that the
relapse takes place between two follow-up visits, and the exact time to relapse is unknown.
In statistics, we say relapse time is interval censored. Interval censoring is also encountered
in breast cancer registry studies in which information on family history of cancer is updated
periodically. The Strang Breast Surveillance Program for women at increased risk for breast
cancer, for instance, has enlisted over 800 women with complete pedigree information which
is verified and updated continuously. Family history data such as age at diagnosis of a
specific cancer, or a benign but risk-conferring condition, are obtained from each registrant
at each update. Time to a cancer event, and definitely time to first detection of a benign
condition, are at best known to fall in the time interval between the last update and age
at diagnosis. A third but increasingly important area of application of interval censoring
is in breast cancer chemoprevention experiments or prevention trials, which involve the
observation of one or more surrogate endpoint biomarkers (SEB) over time. The scientific
question of interest here is the estimation of time for the SEB to reach a target value, and
time from cessation of intake of a chemopreventive agent to the loss of its protective effect.
Unfortunately, the exact values of both these time variables are known only to lie in between
two successive assay inspection times.

Let X denote a time-to-event variable with distribution F(z) = Pr(X < z), or equiv-
alently, survival function S(z) = 1 — F(z). In interval censoring, X is not observed and
is known only to lie in an observable interval (L, R). In our previous DOD funded grant,
we have made fundamental contributions to both the theory of the generalized maximum
likelihood (GML) estimation of S, and the computation in connection with the inference of
GML estimator (GMLE) § of S. These contributions are restricted to the case of univariate
interval-censored data.

Multivariate interval censoring involves d > 2 correlated X variables, each of which
is subject to interval censoring. The main statistical concern here is the GML estimation
of the joint survival function S(zi,...,z4) = Pr(Xy1 > 1,...,X4 > z4), and the correla-
tions among the variables. Our interest in multivariate IC data is driven by needs arising
from two related areas of breast cancer research at Strang. First, our investigators in the
Strang Cancer Genetics Program want to study various patterns of familial aggregation of
breast, ovarian and other forms of cancer using family history data from the Strang Breast
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" Surveillance Program. Studies of familial early onset of breast cancer, breast-ovarian and
breast-prostate associations will lead to multivariate IC data of high dimensions; therefore,
a proper statistical procedure together with a feasible software to deal with such data are
very much needed. Second, we are conducting a one-year chemoprevention trial of indole-3-
carbinol (I3C) for breast cancer prevention. In this prevention trial we are monitoring the
levels of two SEB’s, a urinary estrogen metabolite ratio and a blood counterpart, both of
which are subject to interval censoring. An earlier dose-ranging study of I3C conducted by
Wong et al [1] has been published.

Statistical analysis of multivariate IC data has never been attempted. In the multivari-
ate situation, modeling of the intercorrelated time-to-event variables and their dependency
structure will require a great deal of innovative thinking; moreover, GML computation in
realistic sample sizes can be prohibitively difficult.

The overall aim of this research proposal is to develop statistical inference for multi-
variate interval-censored data thé,t are encountered in breast cancer chemoprevention trials
employing multiple surrogate endpoint biomarkers, and in breast cancer registry follow-up
studies of familial aggregation of breast and other forms of cancer. Asymptotic general-
ized maximum likelihood theory has been investigated and computer software package for

maximum likelihood inference and Kaplan-Meier type survival plots has been implemented.

C. BODY
Consider nonparametric estimation of the joint survival function S(z,...,z4) =
Pr(X; > z,...,X4 > zq) of d > 2 intercorrelated time-to-event variables Xj, ..., Xg4, each
of which is subject to interval censoring. For ease of presentation and without any loss of
generality, we shall restrict our discussion to the bivariate case X = (X1, X2).
Let (U;, V;) denote two consecutive follow-up times corresponding to X;, and (L;, R;)
denote the observable interval-censored (IC) data for X; defined as

(0,U5) if X; <U;,
(Li, R;) = (U, Vi) U, <X; <V, (1)
(V;Z’ +OO) if X; >V,

for i = 1, 2. Under this two-dimensional interval censorship model, data are always interval
censored, i.e., L; < R; with probability one. If we allow the possibility of having exact
observations in the data, so that

L; =R, = X,, (2)




then (1) and (2) together define a two-dimensional mixed interval censorship model.

" Let B; denote any one of [0,U;], (U, Vi] and (V;,+00). Therefore, a bivariate IC data
point is a rectangular region in R? taking one of the nine forms in B = {Bx X By : k,l =
1,2,3}. Given a sample of size n, the observations (L;1, R;1, Lia, R;3) can be represented
by rectangle subsets I; € B, for i = 1, ..., n. Define a maximal intersection (MI) A of the
observable rectangles Iy, ..., I,, to be a nonempty finite intersection of the I;’s such that
ANI; =0 or A, for each i. Let Ay, ..., A, denote the distinct maximal intersections with
respect to I, ..., I.

The generalized likelihood function of S is given by A, = pg(I1) X -+ X pg(In), where
ps(+) is the probability measure induced by S. Wong and Yu [2] show that the GMLE 3,
which maximizes A,, must assign all the probability masses si, ..., 8 to A1, ..., Ap. In
general, S has to be obtained iteratively. Since S is also a self-consistent estimate (SCE),

we can implement the SCE algorithm by solving for i, ..., 3,, in

6,,133
Z 4 D ket

zksk

j =1, ..., m, where §;; = 1[{A; C I;], 1[] denoting the indicator function, and obtain an

SCE of S(z)
5’(@) = Z §j'

A;C(z1,+00) XX (zg,+00)

With starting values 35-0) = 1/m for all j, S (z) is the GMLE at convergence.

In the first and second years of our research, we established consistency of the GMLE S
under both discrete and continuous assumptions. We also established asymptotic normality
of the GMLE S under a set of discrete assumptions. Additionally, we derived asymptotic
properties of the weighted Kaplan-Meier test statistics given by

D= / @S ~ Ss(e)da,

where W (-) is a given weight function, and A and B refer to two comparison conditions.
When the underlying distribution Fj; and the distribution of the censoring variables
are both continuous, Groeneboom and Wellner [5] have conjectured in the univariate case
that § is not asymptotically normally distributed and the convergence rate of S is of order
(nlnn)'/3. We expect the same observation to hold true in the multivariate situation. Be-
cause of the theoretical difficulty with establishing the asymptotic non-normal distribution
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of § under continuous distribution assumption, we have to resort to the bootstrap method
numerically evaluate the asymptotic inference of S.

We have devoted our effort to this aspect of research in the fourth year of our DOD
grant. We have develop a computer program to perform the bootstrap asymptotic calcula-
tions. The program is made available to the public via the internet at
www.math.binghamton.edu/qyu/index.html. We have also carried out simulation studies to
investigate whether the bootstrap method can provide a consistent estimate of the standard
deviation of § under uniform distributions for sample sizes 50, 100 and 200. Let SD,, denote
the bootstrap estimate of the standard deviation with sample size n. Our simulation results
suggest that (1) § converges in distribution at the rate of (nlnn)/% and (2) SD, will be
sufficiently close to the standard deviation when the sample size is at least 50.

In the third and fourth and final years of our research, we have studied the consistency
property of S under more general conditions. A manuscript summarizing the findings have
just been submitted to a statistical journal [3].

Also, in the fourth year of our research, we have updated and expanded a computer
software package for carrying out asymptotic GML inference of S. The package is made
available for the public via the internet at www.math.binghamton.edu/qyu/index.html.

A key feature of multivariate IC data and a parameter of substantive importance is the
correlation coefficient p between a pair of the X variables, say X; and X2. The GMLE of
p(X1, X2) is
p(z1,2)

_ i ffxlwzdﬁ'(wl,aig) —ffmldﬁ'(:z:l,m?)ffmzdﬁ’(ml,m%) .
{lf [23dF(z1,22) — ([ [ 21dF (21, 22))2|[[ [ a3dF (@1, 22)([ [ m2dF (21, 2))2]}1/2

In a follow-up study involving interval censoring, it is often the case that not all events will

take place by the end of the study. In this situation, p will not provide a consistent estimate
of p. Let 7 denote the largest follow-up time. A more appropriate correlation coeflicient to

consider is

p (:L' T )_ CO’U(X],X2|X1,X2 S ’7')
T2 \/VG,’T'(X1|X1 < T)VCL’I“(XQIXz __<_ T).

A A

F (=1-25), the GMLE of F, (= 1—5), is a discrete cdf with discontinuity points at
the upper-right vertexes of the maximum intersections. Without loss of generality, let
a1 < ++- < an, be the set of partition points of the real line such that the set {(a;,a;) : 4,5 €
{0,1,...,m,m+ 1}} contains all the discontinuity points of ﬁ', where ap = —o0 and a1 =
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A

oo. Let 3;; denote the GMLE of the bivariate probability weight assigned to (a;,a;) by F.
The GMLE of p, is given by

by = EgoE12 — E1oEp2
" VIEwEn — (E10)Y[EowE22 — (Eo2)?]’

where E1x = Yo 4ico0®i8i8i, Boo = Dgaj<oodin B0 = Yo, a5co0 %ibi
Boo = Y 4;.0,<00 86 B11 = L, 0 <00 05 83> and Exp = Yo, o o, 0535

From the consistency results of Wong and Yu [2], and Yu, Yu and Wong [3] we can show
that p, is consistent under the assumption that the union of the support sets of censoring
variables is dense. Moreover, if the range of the censoring vector is finite, g, can be shown

to be asymptotically normally distributed. The asymptotic variance of p, can be estimated
by

6> =BI'P,

where B = % s = {s;; : (i,5) # (m,m)}’, and T is the information matrix, that is

_ _621nL
T 9s'8s’

We are preparing a manuscript on the asymptotic properties of .

When the finite distribution assumption regarding the censoring vector is not met, the
expression for 62 given above is no longer a consistent estimator of the variance of the GMLE
pr of the correlation coefficient p,. As in the case of S, we have devoted our effort in the
fourth year of research to investigate the asymptotic behavior of g, using the bootstrap
method. Again, we have established that the asymptotic behavior of p, is similar to that
of . Our research suggests that the bootstrap method is an important practical statistical
tool that can be easily used to obtain interval estimate of the correlation coefficient p,. We
have made available the bootstrap computer program for g, to the public via the internet

at www.math.binghamton.edu/qyu/index.html.

9




D. KEY RESEARCH ACCOMPLISHMENTS

e We have implemented a computer software package for calculating the GMLE S of the

joint survival function S(z1,...,z4) = Pr(Xy1 > z1,...,Xa > zq) of (d > 2) correlated
time-to-event variables X1, ..., X4, each of which is subject to interval censoring.

We have established consistency of S under both discrete and continuous distributional
assumptions. We have also investigated consistency of S under a range of conditions

defined by weaker assumptions.

We have established asymptotic normality for S under finite distributional assump-
tions, and pointed out S may not converge in distribution to a normal variable under

continuous assumptions.

We have also encountered and provided a solution to a methodological problem arising
from an unexpected finding that S may not be unique in the case of multivariate interval

censoring.

We have established consistency for the GMLE p., of the correlation coefficient p, be-
tween a pair of correlated time-to-event variables, both of which are subject to interval
censoring. Under finite distributed assumptions, we have derived the asymptotic nor-

mality of S.

When finite distributional assumptions are inappropriate, we have implemented a boot-
strap method to obtain interval estimate of p,. Through simulation studies, we have

provided evidence that the bootstrap estimate of the standard error of p, is consistent.

We have completed the required computer programs to implement the asymptotic in-
ference of S and pr, and to carry out bootstrap estimation of the standard errors of S
and p,. The computer software is made available to the public via the internet.
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E. REPORTABLE OUTCOMES

e Two published articles:
[a] Wong, G. Y. C. and Yu, Q. Q. (1999). Generalized MLE of a joint distribution
function with multivariate interval-censored data. J. of Multi. Anal. 69, 155-166.
[b]. Yu, Q.Q, Wong, G.Y.C. and He, Q.M. (2000). Estimation of a joint distribution
function with multivariate interval-censored data when the nonparametric MLE is not
unique. Biometrical Journal, 42, T47-763.

e One submitted manuscript:
[a]. Yu, S.H., Yu, Q.Q. and Wong, G.Y.C. (2003). Consistency of the generalized MLE
of the distribution function with multivariate interval-censored data.

e Computer programs for asymptotic GML inferences installed at
http://www.math.binghamton.edu/qyu/index/html.

e Computer programs for bootstrap inferences of S and pr installed at
http://www.math.binghamton.edu/qyu/index/html.

F. CONCLUSIONS

In the four years of our DOD grant, we have successfully accomplished our research
objectives regarding asymptotic inferences of the GMLE S of the joint survival function for
multivariate interval-censored data, and of the GMLE p, of the correlation coefficient for a
pair of correlated time-to-event variables, both of which are subject to interval censoring.

Iterative calculation to obtain § in the multivariate case can be computationally very
intensive. We have implemented an efficient algorithm for this purpose. We have established
consistency for S and pr under both discrete and continuous distributional assumptions.
Under discrete assumptions, we have established asymptotic normality for S and pr so that
hypothesis testing can be carried out. When the distribution function of the censoring
vector is continuous, asymptotic normality is not expected for both S and pr. We have
implemented a bootstrap procedure to numerically obtain asymptotic interval estimates of
the parameters. We have make available to the public via the internet a set of computer
programs for asymptotic GML inferences of S and Pr-

The results which we have established will be useful to breast cancer researchers pursu-
ing chemoprevention intervention trials involving multiple surrogate endpoints biomarkers,
and genetic epidemiologists conducting studies on familial aggregation of breast cancer and
related cancers.
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Summary

A nonparametric estimator of a joint distribution function Fo of a d-dimensional random vector with
interval-censored (IC) data is the generalized maximum likelihood estimator (GMLE), where d > 2.
The GMLE of Fy with univariate IC data is uniquely defined at each follow-up time. However, this is
no longer true in general with multivariate IC data as demonstrated by a data set from an eye study.
How to estimate the survival function and the covariance matrix of the estimator in such a case is a
new practical issue in analyzing IC data. We propose a procedure in such a situation and apply it to
the data set from the eye study. Our method always results in a GMLE with a nonsingular sample
information matrix. We also give a theoretical justification for such a procedure. Extension of our
procedure to Cox’s regression model is also mentioned.

Key words: Asymptotic normality; Consistent estimate; Multivariate survival ana-
lysis.

AMS 1991 subject classification: Primary 62G05; Secondary 62G20.
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1. Introduction

Multivariate interval-censored (IC) data arise in industrial life-testing and biomedi-
cal studies. The following are examples of such data.

Example 1.1: (The Colon Cancer Study (MOERTEL et al., 1990). A national inter-
group trial was conducted in the 1980’s to study the drugs levamisole and fluorour-
acil for adjuvant therapy of resected colon carcinoma. In the study, 929 patients with
stage C disease were randomly assigned to observation, levamisole alone, or levami-
sole combined with fluorouracil. The time to cancer recurrence and the survival time
were both considered important outcome measures. The survival time was right cen-
sored. However, since most of the patients were followed up with time intervals
several weeks (or months) apart, the time to cancer recurrence was only known to lie
in a time interval between two follow-up times. Thus we have a bivariate random
vector with one variate right censored and the other interval censored.

Example 1.2: (The Italtan-American Cataract Study Group (1994)). A total of
1399 persons, between 45 and 79 years of age, who had been identified in a
clinic-based case control study were enrolled in a follow-up study between 1985
and 1988. The follow-up study was designed to estimate the rate of incidence and
progression of cortical, nuclear, and posterior subcapsular cataracts and to evaluate
the usefulness of the Lens Opacities Classification System II in a longitudinal
study. Beginning in 1989, follow-up lens photographs were taken and graded at a
six-month interval. Patients might skip some visits. Data were obtained from Zeiss
slit-Jamp and Neitz retroillumination lens photographs at each patient’s visit. Con-
sequently, the exact time that the event of interest happened was only known to lie
within the period between two consecutive visits or was right censored if by the
termination of the study the event still did not happen. Hence IC data for eyes
arose. Each patient had two eyes and thus bivariate IC data occurred.

Nonparametric estimation of a distribution function with univariate IC data has
been studied by PETO (1973), GROENEROOM and WELLNER (1992), and YU et al.
(1998), among others. A univariate IC observation is a pair of extended real num-
bers L; and R; (i.e., whose values are either real numbers or +o0) such that
L;<R;, i=1,...,n. It is one of the following 4 forms: L; = R; (exact),
O0=L;<R; (left-censored), Li< R =00 (right-censored (RC)) or
0 < L; < R; < 0o (strictly interval-censored (SIC)). A d-dimensional multivariate
IC observation (L;, R, ..., Ly, Riq) has d pairs of univariate IC observations. An
observation can be viewed as a d-dimensional rectangle, say Z. In this paper we
refer the univariate IC data as univariate case 2 IC data if the data set consists of
SIC observations, and/or right-censored or left-censored observations, but not ex-
act observations. Moreover, we refer the multivariate IC data as multivariate case 2
IC data if (Lj,Ry), i = 1,..., n, are univariate case 2 IC data for all j=1, ..., d.
The data in Example 1.2 are bivariate case 2 IC data, but the data in Example 1.1
are not since (L;, R;2)’s are not univariate case 2 IC data.
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Nonparametric estimation of a joint distribution function with multivariate case 2
IC data was considered by WoNG and YU (1999). Under a multivariate interval censor-
ship model and the assumption that the follow-up times take finitely many values, the
problem reduces to a parametric problem of estimating a multinomial distribution. If,
in addition, the GMLE is unique at follow-up times, then the generalized maximum
likelihood estimator (GMLE) of a distribution function is consistent at the follow-up
times and is asymptotically normally distributed. The GMLE of F;, with univariate IC
data is uniquely determined at observed follow-up times. In the multivariate case it is
desirable that the GMLE of Fj is uniquely determined at (xj, ..., x;), where x;’s are
observed follow-up times. However, this is not true in general. In Section 2, we present
such a counter-example using data set from an eye study (LESKE et al. 1996). It pre-
sents a problem on the variance estimation with multivariate IC data since the informa-
tion matrix may be singular. We shall address how to estimate Fy, and the covariance
matrix of the estimator in such a case in this paper.

Multivariate right-censored (MRC) data are special cases of multivariate IC
data. The GMLE with MRC data may also be not unique at follow-up times.
However, it has another drawback, namely, it is not a consistent estimator of a
continuous distribution function (Tsa1, LEURGANS, and CROWLEY, 1986). Several
consistent estimators have been proposed (see for examples, DABROWSKA (1988),
PRENTICE and CAI (1992), LIN and YING (1993), and van der LAAN (1996)). These
estimators are essentially unique, thus the non-uniqueness of the GMLE with
MRC data has not attracted attention in the literature.

In Section 2, we propose a procedure to find, in the situation of multivariate IC
data, a GMLE which always has a nonsingular sample information matrix. Thus
we can use the inverse of the information matrix as an estimator of the covariance
matrix of the GMLE. The theoretical justification is put in Section 3. Some de-
tailed proofs are given in the Appendix. Section 4 is a discussion on several issues
including extension of our method to Cox’s regression model with multivariate IC
data and covariates.

2. Method of estimation

We shall introduce the GMLE of F; and some notations in § 2.1, present examples
of non-unique GMLEs and singular information matrices in § 2.2, and explain the
procedure for estimating the variance or covariance of the GMLE in § 2.3. In § 2.4,
we apply our method to a date set from an eye study (LESKE et al., 1996).

2.1 The GMLE

Let X = (Xj,...,Xy) be a d-dimensional random survival vector with a joint
distribution function Fy(x), where x = (x1,...,%;). The observable random
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vector is (Li,Riy,...,L4,Rs), where L; <R; for all i Suppose that
(L“,Rll, e ,L]d, Rld)7 N (L”],R,,], e ,L,,d,Rnd) are 1.i.d. copies of
(Ly,Ry,...,Lq,Rq). Bach univariate IC data (L;, R;) can be viewed as an interval

_ [L,'j,R,"] if L,“ = R,'j,
Iija where Iij = { (LU,R;] if ij < Rij .
be viewed as a (d-dimensional) rectangle Z; =I;y X ... X Iig, i = 1, ..., n. Define
a maximal intersection (MI), A, with respect to Z;’s to be a nonempty finite inter-
section of Z;s such that A N7y equals either ) or A for each k. Let {Ay,...,An}
be the collection of all possible distinct MI's. It can be shown that the GMLE of
Fo(x) which maximizes the generalized likelihood function, A,, must assign all
probability masses sy, ...,s, to the sets Ay,...,A,. Thus the generalized likeli-
hood function is as follows:

Thus each multivariate IC observation can

A, = ll:j[] “’F(Zl) = iljl Jé [ausj] s (21)

where W, is the measure induced by an arbitrary distribution function F,
d; = 1(A; C I;), 1(-) is the indicator functlon S(=(s1,.--,5n)") € Ds, §' is the

transpose of S, and D, = {S;S > 0, Zs, =1}. By S>0, we mean s; > 0 for

j=1,...,m. Let Sg be the probablhty mass induced by W,
A GMLE of Sy can be obtained by the self-consistent algorithm described by
Turnbull (1974) for univariate IC data as follows: Let s( ) =1 /mforj=1,.
() _ z 1 by
m (h 1)
Z Oik Sy

converge. The justification of thxs self-consistent algorithm for multivariate IC data
is similar to that given in TURNBULL (1976). Given a GMLE S of So, a GMLE of

Fo(x) is

At the h-step, s ,j=1,...,mh>1. Repeat until s}h)s

m

(x) = 2414 € [0,] x ... x 0,32 (2.2)

2.2 Non-uniqueness of the GMLE S

When d = 1, the GMLE S of So is unique (PETO (1973)), even though the GMLE
of Fp is not unique on a non-singleton MI. Under the assumption that all the
random variables are discrete and take on finitely many values, it reduces to
a parametric problem of estimating a multinomial distribution (TURNBULL,
1974). Thus it is easy to show that S is consistent. Furthermore, if s; > 0 for
all i, (§,...,8,—1) 1is asymptotically normally distributed. Letting




-

Biometrical Journal 42 (2000) 6 751

kY

Sy=1—5 —...Su:_1, an estimator of the covariance matrix of (§i,... ,Sm—1) 18
. 9* log A,
the inverse of the sample information matrix —|{—(—F7— . In
Os:0s; (m=1)x(m=1)18=8
application, we let §i,...,8y be all the nonzero elements of a GMLE S obtained,
denotes=(s1,...,sM_1)’ sy=1—s1—...—sy_1 and § = (§1,...,8u- 1) Let
S PlogAy (E (8n — Smr) (8 — ahM)) |
ST T T 8¢ |ews 2 )
008 =\ (ke(Z1)) (M=1)x(M-1)
(2.3)

Jg is also nonsingular and JS‘ is another consistent estimator of the covariance
matrix of the GMLE § (see TURNBULL, 1976). In view of (2.2), F is a linear func-
tion of §. Thus, we can estimate the covariance of (F(x), F(y)).

When d > 2, the above arguments are no longer true. The GMLE of Sy may
not be unique and Jy may not be positive definite. See the following bivariate
examples.

Example 2.1: Suppose that a sample of size 4 consists of observations
(Li,Rii,Li,Rp), i = 1,...,4, which equal (1,6,1,3), (1,6,4,6), (1,3,1,6) and
(4,6,1,6), respectively. Then the MI's are A} = (1, 3] (1,3], A2 = (1,3] x (4,6],
A3 =(4,6] x (1,3] and As=(4,6] x (4,6]. S;=4(1/2,0,0,1/2) + (1 -q)
(0,1/2,1/2,0), g € (0, 1), are all GMLEs of Sy.

To show that Jg in Example 2.1 is singular, we consider the general case. Verify

811 — Oim N
Js=U,DU,, where U,= ,
O1m—1) = O - duur—1) = O / (yy_ 1)

and D is an n x n diagonal matrix with positive diagonal elements (wa(Z) 72
i=1,...,n Denote rank (A) the rank of a matrix A. Verify that

J; is nonsingular if and only if rank (U,) =M —1. (2.5)

In view of (2.1), it is easy to show the following statement.

Proposition 1: Let F be a GMLE of Fy. Then each solution of S to the equa-
tions

m
S 88 =wp(Z), i=1,...,n, Y 55=1 and s52>0, (2.6)
=1

is also a GMLE of So.
In an obvious way, rewrite the n + 1 equations in (2.6) as a matrix form

BS=p, where S>0 and p=us(Z1),...,up(Z )1) (2.7)
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Remark 1: In Example 2.1, let Fq be the GMLE induced by §q. Then
g, (Z )=1/4,i=1, ..., 4, for all g € [0,1]. This is true in general in view of
Eq (2.6). Thus the matrlx D in (2.4) has the same value for all GMLEs of Fj
induced by the solutions of Eq. (2.6) and so is the vector p in (2.7).

Hereafter, denote r = rank (B). It can be shown (see Lemma 2 in Appendix B) that

rank (U,) <r—1. (2.8)

In Example 2.1 » =3 and M = 4 for the GMLE § = (1/4,1/4,1/4,1/4) (see,
e.g., Bq. (3.3) in Section 3). Thus rank (U,) <2 <3 =M —1 by (2.8). Conse-
quently, the corresponding Jg is singular by (2.5).

In general, the number of MI's are in the order of n?. See the following example.

Example 2.2: Assume d = 2. Let Z; = (1,2] x (0,n], T, = (3,4] x (O,n],...,
I,,/z = (n -1 n] 0 n] I(,,/z 4] = (0 n] (1 2] I(,,/2)+2 (0 n] X (3 4]
Z,=(0,n] x (n -1 n] be a sample of the random rectangle Z, where n is even.
Then there are (n/2) MI’s, namely, A; = (j,j + 1] X (k,k + 1], where k, j =1, 3,
5 ...,n—11Ttis easy to check that there are infinitely many GMLEs of Sy, one
of them is§=n/2)%i=1,...,(n/2)"%

In view of the example, it is poss1b1e that m >> n for a large sample size n.
In particular, it is possible that M >n+1. If so, Jg is nonsingular. In
fact, rank (U,)<r—1 by (2.8) and thus rank(U,)<M—1, as
r <min {n+1, m} <M by assumptions. Consequently, Jg is singular by (2.5).
Thus, for the GMLE S given above, Jg is singular unless n = 2.

Our simulation experiences suggest that if » < m then the self-consistent algo-
rithm (see § 2.1) with equal initial values will result in a GMLE S such that
M > r. Hence rank (U,) <r—1 (<M —1) by (2.8) and thus the corresponding
information matrix Jg is singular by (2.5). Therefore, we can not estimate the
covariance of (F(x), F(y)) via such Jg. If we need to make confidence statements
on the estimator, such a GMLE is not desirable.

2.3 Estimation of Fy and the covariance matrix of the estimator

Derive a GMLE § using the self-consistent algorithm in § 2.1. If » = m, then Jg is
nonsingular (see Lemma 1 in Appendix B) and we use Jg I as the estimate of the
covariance matrix of (5,..., Sm-1).

If r < m, then there are multlple solutions S of BS = p (Eq. (2.7)) in which F
is the cdf. induced by the given S, and we shall look for another GMLE to re-

place F'. 1t can be shown (see Lemma 3 in Appendix B) that

there exist r linearly mdependent column vectors of B, say, columns ij,...,i,,
such that ¢, = (V'V) V' p >0 (write ¢, = (cor,---,Cor)) (2.9)
where V is the (n + 1) X r matrix consisting of columns i,...,i,of B.
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Let S = (51,...,8n), where §; =cg, j=1,...,r, and § =0 if i¢ {ir,...,i}.
Verify that S satisfies (2.7) and thus by Proposition 1, S is a GMLE of Sg. We
choose such a GMLE to replace S. Since there are only finitely many possible
combinations of r linearly independent column vectors of B, it is easy to imple-
ment a computer algorithm to obtain S (see, for example, Remark 2 in Appendix
B).

By reordering the index, without loss of generality (WLOG), we can assume

S' = (co1,---,¢0r0,...,0) = (§,51,0,...,0), (2.10)

where M is the number of nonzero entries of S and § the (M — 1) x 1 vector
whose entries are all positive. Replacing § in (2.3) by §, Jg is nonsingular (see
Lemma 1 in Appendix B). We propose to use the GMLE of Fy corresponding to
S, denoted by

F(x) = é ;s (and F(y) = gv,@,) , (2.11)

where u; = 1(A; C [0,x;] X ... X [0,x4]) (and v; = 1(A; C [0,1] X ... x [0,34]))-
Then the covariance of the new GMLE F can be estimated by

Cov (F'(X), F(y)) = (u1 — UM, UM — MM) Js_l(vl — UMy UM—-1 — ’UM)t .
(2.12)

It is obvious that §; is not a consistent estimator of p (A;). We shall justify the
above procedure in Section 3 by showing that § is asymptotic normally distributed
with the asymptotic covariance estimated by J 1;

It is worth mentioning that in Example 2.1 Sy, ¢ ¢ [0, 1], are also solutions of
BS =p, but S, > 0 is not true. Thus they are not GMLE of So. When r < m, if
we choose an arbitrary set of r linearly independent column vectors in B, say
columns ji,...,j- such that the solution of S to BS=p with 5;=0 if
j¢ {ji,--.,jr}, then it is possible that s; < 0 for some j € {ji,..., j-}. Thus such
a solution of S is not desirable.

In § 2.3, we could define M =r rather than define M = the number of nonzero
elements in S obtained in (2.10). The corresponding matrix Jg is still nonsingular.
However, this approach increases the dimension of Jg and thus is not desirable
from a computational point of view. This is also one of the reasons that in the
univariate case TURNBULL (1976) proposes to use Jg instead of

B (32/\,1 )
8S,'3Sj (m=1)yx(m-1)

2.4 An Application to an LSC study

, though both of them are nonsingular.
$=§

The following is an application of our procedure to a set of eye data from an LSC
study (LESKE et al., 1996). The LSC study is an epidemiological study of the
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natural history of cataract similar to Example 1.2. The Leske group followed 744
participants of a case-control cataract study in a five-year period. The major
aims of the study are to collect epidemiological data and to measure the growth
rates (survival functions) of nuclear, cortical and posterior subcapsular opacities
in a clinic-based population, to assess and compare various qualitative and quan-
titative methods to document changes in opacities and color, and to evaluate risk
factors.

Here X = (X;,X>), where X; and X, are the time when the changes in opacities
of the left and right eyes occur, respectively. The original data were recorded in
the unit of days. In our analysis, we grouped the data for computational reason.
Otherwise, we would end up with a large amount of MI’s and thus it is difficult to
compute the inverse of the information matrix even if the matrix is nonsingular.
For the results in Table 1, we grouped the data in the unit of years in the follow-
ing way: Let (L,R) be the original observation and (Lg, R,) the observation after
grouping. Then L, is the largest integer that < L/365 and R, is the smallest inte-
ger that is > R/365. We compute a GMLE of Sy with the grouped eye data. For
this GMLE S, there were 27 positive entries, but the rank of the 26 x 26 informa-
tion matrix is only 22. Thus it is singular and the GMLE of S, for this data set is
not unique. Using the procedure we proposed in this paper, we are able to com-
pute the estimates of the SD of the GMLE.

In Table 1, we give the estimates of survival functions F(x) = P(X > x), in the
first row of each cell, and their standard deviations in the second row of each cell.
Rows and columns correspond to left and right eyes, respectively. For ease in dis-
play we only give the estimate at year i (for the left eye) and year j (for the right

eye).

Table 1
Estimates of F(i, j) and Their SD

year 1 2 3 4 5 6 7
1 0.968 0911 0.880 0.855 0.815 0.797 0.761
0.010 0.014 0.013 0.014 0.017 0.023 0.038
2 0919 0.886 0.858 0.834 0.794 0.784 0.753
0.015 0.015 0.014 0.015 0.018 0.024 0.039
3 0.862 0.828 0.828 0.804 0.781 0.776 0.747
0.017 0.017 0.017 0.018 0.019 0.023 0.040
4 0.853 0.819 0.819 0.803 0.780 0.775 0.746
0.017 0.017 0.017 0.016 0.018 0.022 0.037
5 0.819 0.786 0.786 0.770 0.770 0.765 0.737
0.020 0.020 0.020 0.021 0.020 0.023 0.038
6 0.813 0.779 0.779 0.764 0.764 0.764 0.735
0.024 0.024 0.024 0.023 0.023 0.023 0.038
7 0.777 0.743 0.743 0.735 0.735 0.735 0.735

0.038 0.039 0.039 0.038 0.038 0.038 0.038
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3. Theoretical issues

We shall show that under proper assumptions all the GMLEs are consistent on the
set of all vertexes of the observed rectangles Z;’s. Furthermore, we shall show that
the GMLE we proposed is asymptotically normally distributed on the above men-
tioned set. For a better presentation, we put the latter proof in Appendix A.

GRroENEBOOM and WELLNER (1992) formulate the univariate case 2 interval cen-
sorship model (UC2 model) for univariate case 2 data. WONG and YU (1999)
formulate its natural extension, the multivariate case 2 interval censorship model
(MC2 model) as follows. Suppose that the random censoring vector (U, Vi, ...,
U,,V,) and X are independent. The observable random vector (L, Ry, ..., Ly, Ry)
is generated by the following formula.

0,0;) if X; < U,
(L,,R,): (U,,V,) if U<X; <V, l=1,,d (31)
(Vi, +OO) if Xi>V;,

The UC2 model and the MC2 model are appealing for their simplicity. However,
the independence assumption between (U;, V;) and X; is often not true. The reason
is as follows. Univariate case 2 IC data occurred in the following situation: A
patient was interviewed K times during a study period, where K may not be the
same for all patients in the study. Let ¥; be the ith interview time of the patient. If
the event of interest was diagnosed at time Y;, the exact time that the event took
place was only known to lie in between the two consecutive interview times Y;_;
and Y;. Thus univariate IC observations can be represented by an extended random
vector (L, R), where

(0,11) if X < Y;(left censored),
(L,R) = { (Yg,+00) if X > Yk(RC), (3.2)
(Yi1,Y) ifY_1<X<Y and 2 < i< K(SIC).

In view of (3.1) and (3.2), we can see that (U;, V;) is a function of ¥;’s and X;,
thus in reality, (U;, V;) and X; are dependent, and it violates a key assumption in
the UC2 model.

Assuming that X and (X, {Yj :j > 1}) are independent, model (3.2) is called
the univariate mixed case interval censorship model (UMC model) (ScHick and
Yu, 1998). If (L;,R;) is from a UMC model for i=1,...,d, we say
(Li,Ry,...,L4,Ry) is from a multivariate mixed case interval censorship model
(MMC model). Let A, be the collection of all the possible vertexes of the realiza-
tions of the random rectangle Z. The following theorem justifies all GMLESs of Fj.

Theorem 1: Assume the MMC model and that the censoring vectors Y;s are
discrete. Then each GMLE of Fy is consistent on the set A,.

The proof of the theorem is similar to the one given by YU et al. (1998b) for
the UC2 model and is skipped here. Let A be the collection of all vertexes of the
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MTI's with respect to all the realizations of the random rectangle Z. Then A con-
tains points x, where x;’s are observed follow-up times. Note that if A, O A, then
it follows that the GMLE of s is consistent. A, D A is true for d = 1 but is false
for d > 2. See the following example.

Example 3.1: Assume a bivariate case 2 model. Suppose that Fy puts weights
0.4, 0.3, 0.2 and 0.1 to the points (2,2), (2,5), (5,2) and (5,5), respectively. The
censoring vector (U, Vi, U, Vo) = (1,6,1,3), (1,6,4,6), (1,3,1,6) and
(4,6,1,6) with probability 0.25, 0.25, 0.25 and 0.25, respectively. The possible
values of (L;,R;,Lo,Ry) are (1,6,1,3), (1,6,4,6), (1,3,1,6), (4,6,1,6),
(1,6,0,3), (1,6,4,00), (0,3,1,6) and (4,00,1,6). Denote the corresponding rec-
tangles by Z;, i=1, ..., 8, respectively. Then the MI's are A; = (1,3] x (1,3],
Ar = (1,3] x (4,6], A3 = (4,6] x (1,3] and Ag = (4,6] x (4,6]. The GMLE of S
is not unique (Example 2.1 is a possible sample of n = 4) and is not consistent.
However, the GMLE F(x) is uniquely defined and consistent at each x € A,, but
not at (3,3), (3,4), (4,3) and (4,4), which belong to A. In this example,
rank (B) = 3 as BS = p is equivalent to

we(Z1) = up(Zs) = s1 + 52, Wp(T3) = pp(Z7) =1 = (51 +52),
We(Z2) = pup(Te) = s2+ 53, Wpe(Za) =np(Zg) =1~ (s2+s3), (3.3)
S1+ 85 +s3+s4=1.

Thus for any arbitrary sample size n, there are infinitely many GMLEs. What
proposed in § 2.3 is to estimate a function F; such that F;(x) = Fo(x) on A.
and pp (A;) =0 for a fixed j, say j=4. This means that we should find a
GMLE with §; =0. Then the GMLE of Sy is a consistent estimator of
(Wr, (A1), br, (A2), Wy, (A3), s (Ad)) (= (0.5,0.2,0.3,0)), but is not a consistent
estimator of (7, (A1), g, (A2), by, (43), b, (44))-

4. Discussion

4.1 Validation of the methodology

Is there any theoretical validation to use the inverse of the information matrix Jg
as an estimate of the covariance matrix of the GMLE § (see § 2.1) with case 2 IC
data? This is crucial since GROENEBOOM and WELLNER (1992) conjectured that
under the assumption that all distribution functions are absolutely continuous, the
GMLE of F, with univariate case 2 IC data is not even asymptotically normally
distributed. In this regard, Yu et al. (1998a, b) establish asymptotic normality
results for the GMLE with univariate IC data under discrete assumptions. The
current paper considers the situation that the GMLE of Fj is not unique at discrete
follow-up times. Such a discrete condition is a standard assumption in biomedical
studies (see, e.g., TURNBULL, 1974) and is met in most clinical studies because
follow-up time is traditionally recorded in a discrete time scale such as days.
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4.2 Two types of non-uniqueness

There are two types of non-uniqueness of F for case 2 IC data. (1) ¥ may not be
unique at a point in A. (2) F is always not unique at the points in the interior of
an ML Example 2.1 presents an instance for both types of non-uniqueness of the
GMLE. There are at least two GMLE’s, say F and F, such that ws(A;) = 1/2 but
ws(A;) = 0 for an MI A;, where A} = (1,3] x (1,3] is an ML Thus F(3,3)=1/2
and F(3,3) =0, where the point (3,3) is a vertex of the MI. Note that fixed
ws(A;) for all MI's A, F (or F) is not uniquely determined on each A; if
wi(A;) >0 (or uF(A) > 0). Namely, we can define ¥ to be continuous with a
density function f =1 on A; = (1,3] x (1, 3], or define to be discrete with a jump
1/2 at the point (3,3) on Aj.

Only the first type of non-uniqueness causes a problem in estimating the var-
iance of F (x). If Jg is singular, it indicates that we encounter the problem. In
particular, the eye data in § 2.4 have the first type of non-uniqueness. Thus how to
deal with such a situation is an important new issue in multivariate interval censor-
ing as it does not occur in univariate interval censoring.

The GMLEs F obtained at the beginning of § 2.3 and F in (2.11) are both
consistent on the set A,. However, they can be different, even on the set A,. We
are not aware of any proper estimator of the covariance for F if these two GMLEs
are different. We propose to use F and to use formula (2.12) as an estimate of its
covariance.

4.3 Other multivariate interval-censored data

Multivariate right-censored data is a special case of multivariate IC data. There are
other types of multivariate IC data. For instance, the data set in Example 1.1 is
neither a multivariate case 2 data set nor a multivariate RC data set. Note that in
Section 2, we only used the general properties of multivariate IC data and all the
statements are applicable to various types of multivariate IC data. In particular, the
first type of non-uniqueness also occurs in the other types of IC data. The proce-
dure proposed in § 2 can also be applied to such data. However, the justification
we make in section 3 and Appendix A will be a little bit different. To avoid
complication in justification for data like multivariate RC data or the data in Ex-
ample 1.1, we only consider the MMC model in Section 3.

4.4 Multivariate right-censored (RC) data
Even though our method is applicable to multivariate RC data, it is not a good

approach since the GMLE with multivariate RC data is not a consistent estimate
of a continuous Fjy.
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For multivariate RC data, VAN DER LAAN’s (1996) modified GMLE is a more
appropriate approach, since w.p.1 his estimator is consistent and is unique if the
sample size is large enough. His method cannot be applied to the MMC model
introduced in Section 3 since his approach takes advantage of the existence of
exact observations in multivariate RC data.

HANLEY and PARNES (1983) propose an explicit estimator of the covariance of
the GMLE with homogeneous multivariate RC data, that is, the right censoring

vector Y = (Yy,...,Y,) satisfies that ¥; = ... =¥, Their estimate does not in-
volve the inverse of the information matrix Jg. Multivariate case 2 IC data are
unlikely homogeneous, that is, Ly = ... =Ly and Ry = ... =Ry, i=1, ..., n.

Thus this approach is not relevant in our case.

4.5 Cox’s regression model

Cox’s regression model is a more useful model for multivariate IC data when
c_ovariates _are {gyailable. {n particular, we assume the survival function
Fo(x) = (Fu(x))® ", where F, is an unknown survival function, z is a covariate
vector and 3 is a coefficient vector. It is obvious that when the covariate z is
identical to zero, it reduces to the MMC model in Section 3. Thus the non-unique-
ness of the GMLE of parameters of interest remains an obstacle in using the in-
verse of the information matrix as an estimate of the covariance matrix. It is con-
ceivable that the procedure proposed in this paper can be extended to the case of
Cox’s regression model and always results in a positive definite information ma-

trix.
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Appendix

A. Justification of Formula (2.12): We shall show that § obtained in (2.10) of
§ 2.3 is asymptotically normally distributed under two assumptions given in due
course.

Abusing notations, let Zj, ..., Z, be all the possible distinct realizations of the
random rectangle Z, where g < oco. Under this assumption, with probability one
(w.p.1), for sample size n large enough, the random sample contains all
Zi,..., Z,. WLOG, we can assume Zy,..., Z, are the first g observations in the
sample, and the rest are just repetitions of them. Let Ay, ..., A, be the MI's w.r.t.
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Zy,..., I, and the ordering of A;’s corresponds to that on s;’s in (2.10). Let
o ... Omm we(Z1)
B — * R . and T — R
Og1 ... Ogn Fo wp(Ze)
1 T 1 (g+1)xm 1 (g+1)x1

Denote y = rank (B). Then S = (uz, (A1), - ., Mg, (An)) is a solution to the equa-
tion

BS = Tg, (since Y Ousi =g (L), i=1,...,8 Y 8= 1) , S>0,
= i=1

(A1)

Thus by deleting row g + 1 through row » in Eq. (2.7), Eq. (2.7) can be simpli-
fied as

BS = Tj, where FisaGMLE and S > 0. (A.2)

Moreover, r = vy. In view of Eq. (2.7), it follows from the theory of linear algebra
Ly
0
y x vy identity matrix, W is a yXx (m—y) matrix, and 0; and 0, are
(g+1—v)xvyand (g+1—7y) x (m—1v) zero matrices, respectively. Then

L, w - . _ ¢
(5 ¥)s—ms—mm— (3, a

where 03 is a (g+1—1v) x 1 zero matrix and ¢, is a yx 1 vector. Note
8") = §, which is the GMLE obtained in (2.10) of § 2.3, and is a solution
3

to Eqs (A3) and (A2). Hence ¢, =(coi,...,Coy) (see (2.10)), or

= (§',5u,0,...,0), where § is obtained in (2.10). (A.1) yields

that there exists a nonsingular matrix H such that HB = < (V)V>, where I, is a
2

L, w ‘
! S=HBS =HTf, = N , where ¢=(cj,...,¢,)" and S>0.
01 02 03

(A4)

To justify our procedure in § 2.3, we make an additional assumption:

If (s1,..., Sm) isasolution to (A.1), then > 1(s; > 0) > v. (A.5)
i=1

Verify that Example 3.1 satisfies (A.5). (A.5) implies that the entries of ¢ are all
positive, as S = ( Oc > is a solution to Eq.s (A.1) and (A.4). Since F is consistent
3

by Theorem 1, p = T converges to Tr, in probability. Consequently, S= <(c),,)
3
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S
converges to (c) in probability. Thus for n large enough M = r and ¢, = (A )
3

by (A.5). Sm
Setting syqq = ... =8y = 0 and s; = 0; if i <y, the likelihood function (2.1)
becomes

£O,...,0,) = 113 6,3, iej_1

i=1j=I

It is important to note that the solution S to Eq.s (A.2) and (A.3) with z si=11s
1

] J=
unique since OY is of rank y. Thus the solution S = S maximizes A, (see
1

2.1)). As a consequence, (0y,...,0,) = ¢, maximizes L(0y,...,0y) under the
constraint Z 0, = 1. Hence the MLE of (6y,...,8y) is (§',8y) if n is large e-

nough. Estlmatmg 0;s is a parametric problem of estimating a multinomial distribu-
tion function, with parameter (8y,...,0y). The MLE converges to ¢' > 0. More-
over, (61, 9 1) (= §) is asymptotically normally distributed, and a consistent

estlmator of its covariance matrix is Jg I Finally, the GMLE F(x E u;; and
F(y) = Z v;0; (see (2.11)). Consequently, (2.12) gives a consistent estlmator of

the covanance of F(x) and F(y) under assumptions 1 and 2 (which ensures
0; = ¢; > 0 for all i and M = v for n large enough).

B. Lemmas: We present the proofs the lemmas needed in Section 2 here.

Lemma 1: (/) For M and § obtained in (2.10), Jg is nonsingular. (2) If
rank (B) = m (see (2.6) and (2.7)), then Jg (see (2.4)) is nonsingular.

Proof: (1) Since r = rank (B), there are r column vectors in B such that they
are linearly independent. By reordering the index, WLOG, we can assume that
they are the first 7 column vectors. Let By and B, be (n+1)xM and
(n+ 1) x (m — M) matrices, respectively, such that B = (B, B). Since the first
M (<r) column vectors in B are lincarly independent by assumption,
rank (B;) = M. Subtracting the last column vector of B, from each of the first
M — 1 column vectors in B; yields

61] '—6]M P 61(M~1)_61M 61M 6
. . . U b M
=1 h b= .
0 N 0 1 nM

(B.1)

and 04 is a 1 x (M — 1) zero vector. Thus rank (U,) =M — 1 as rank (B,) = M.
It follows that Jg is nonsingular by (2.5), which is Statement (1).
(2) Replacing M by r in the above proof results in a proof of Statement ). O
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Lemma 2: The rank of U, (see (2.4)) is at most r — 1.

Proof: In the same way as deriving (B.1), by subtracting the M-th column
vector from the other column vectors in B (see (2.7)), the matrix B is equivalent
to

<U’ bV Sdimaty — O - Oim — O1m

0 1 05>, where V =

6n(M—{-l) —®um .- Oum — dum

and Os is a 1 x (n — M) zero vector. Thus the rank of U, is at most r — 1 as the
M-th row vector, (81p,-..,0um,1), is linearly independent with the remaining
m — 1 row vectors in the above (n+ 1) x m matrix. O

Lemma 3: Statement (2.9) holds.

Proof: A GMLE S of Sy always exists and is a solution to BS =p (by
Eq. (2.7)). Statement (2.9) is trivially true if rank (B) =r=m.

Now assume rank (B) < m. Since S is a nonzero solution to 5S = p, there are
infinitely many solutions by the theory of linear algebra. Let G be the collection
of all such solutions. Note that (1) oS; + (1 —a)S; € G for all §,,8, € G and
for all real number a; and (2) each element of G =GN {S > 0} is a GMLE by
Proposition 1. Thus the boundary of G is not empty, i.e.,

if r < m, then 3 S € G, such that s; = 0 for some i € {1,...,m}.  (B.2)

Deleting columns i1, . . ., i; in the matrix B results in an (n + 1) X (m — j) matrix
Bli-i) and deleting rows i, ..., i; in the column vector S results in an (m — 7
column vector S;, ;. By our construction, S is a GMLE with s;, = ... =s§; = 0

iff S;,..;, >0 and S;_; is a solution to the equation B(""""f)S,-lm,-j = p. We shall
show that

ifr < m, then 3i such that rank (B(i)) = r and statement (B.2) holds -

(B.3)
Verify that if j = 1 then (B.3) is the same as the following statement.
If r <m—j+ 1, then 3 integers i, ..., such that rank (BU-9)y = r
and 3 a solution S;,..; > 0 to the equation B("""”f)S,-lmij =p. (B.4)

By (B.2) and (B.3), inductively on j > 1, we can show that (B.4) holds. Now
letting j=m—r, V= B and ¢, = Si,....i; yields Statement (2.9).

To conclude the proof, we now prove (B.3) by contradiction. Suppose that (B.3)
is not true. Let i = i; satisfies (B.2). Then rank (B(i')) =r — 1. It follows that

column vector i; in B is linearly independent

from the restm — 1 column vectors. (B.5)



v

762 Q. Yu, G. Y. C. WonG, Q. He: Non-Unique GMLE for Interval-Censored Data

Since B is an (n+1) x (m — 1) matrix and rank (B/))=r—1<m—1, by
(B.2), there is another integer i, (# i;) such that S;; > 0 is a solution to the
equation B'2)S; ;, = p. If rank (B("2)) = r — 1, then i = i, must satisfy (B.3) in
view of (B.5), which contradicts our assumption that (B.3) is not true. Thus
rank (B(12)) = r — 2. Inductively on j = 1,...,r, we would find integers i1, ...,
such that S;; >0 is a solution to the equation B("‘“'"f)S,-,mij =p and
rank (BUr-4)) = r — j. Consequently, B~ is an (n+ 1) x (m — r) zero matrix
as rank (Bt~} =r—r=0. It leads to 0; =BU~¥S; ; =p+#0; (due to
(2.7)), where 07 is an (n+ 1) x 1 zero vector. The contradiction shows that (B.3)

must be true. This concludes the proof of the lemma. O

Remark 2: The proof of Lemma 3 actually provideds an explicit way to ob-
tain Eq. (2.10). Inductively on j=1,...,m —r, assuming (i,...,#_;) satisfies
(B.4) for j — 1, let i; be the largest integer so that (ij,...,J;) satisfies (B.4). Let
(irreeo i} = {1re e m}\ it yimer}. Then V= (Bom= b, b ) is the
desired matrix in (2.9).
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We consider the problem of estimation of a joint distribution function of a multi-
variate random vector with interval-censored data. The generalized maximum
likelihood estimator of the distribution function is studied and its consistency and
asymptotic normality are established under the case 2 multivariate interval cen-
sorship model and discrete assumptions on the censoring random vectors. ~ © 1999
Academic Press

AMS 1991 subject classifications: 62G05, 62G20.

Key words and phrases: multivariate interval-censored data; asymptotic nor-
mality; asymptotic variance; consistent estimate; generalized MLE; multivariate
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1. INTRODUCTION

We consider the estimation of a joint distribution function F, of a multi-
variate random vector X = (X}, ..., X;) which is subject to interval censoring.
In interval censoring, the value of each ccordinate variable X; may not be
directly observable; instead, a pair of extended real numbers L, and R, such
that L,< X;< R, are always observed. The observations L, and R, satisfy
one of the following four conditions: L,= R, (exact), 0 =L, <R, (left cen-
sored), L,<R,= oo (right censored), and 0 <L,< R, < oo (strictly interval
censored). A d-dimensional interval-censored observation corresponding to
X is represented by the 2d-dimensional vector (L,, Ry, .., L, R,).

Multivariate interval-censored data arise in a variety of life testing

; situations and biomedical studies. We describe a clinical study in the
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t Partially supported by NSF grant DMS-9402561, DAMD17-94-J-4332 and Department
of the Army DAMD17-99-1-9390.
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following example that gives rise to bivariate (d=2) interval-censored
data.

ExampLE 1.1 (The Italian-American Cataract Study Group (1994)).
A total of 1399 persons, between 45 of 79 years of age, who had been
identified in a clinic-based case control study were enrolled in a follow-up
study between 1985 and 1988. The follow-up study was designed to estimate
the rate of incidence and progression of cortical, nuclear, and posterior sub-
capsular cataracts and to evaluate the usefulness of the Lens Opacities
Classification System II in a longitudinal study. Beginning in 1989, follow-
up lens photographs were taken and graded at a six-month interval.
Patients might skip some visits. Data were obtained from Zeiss slit-lamp
and Neitz retroillumination lens photographs at each patient’s visit. The
exact time that the event of interest occurred was only known to lie within
the period between two consecutive visits, or was right censored if by the
end of the study the event still had not taken place. Consequently, bivariate
interval-censored data were encountered.

At present, nonparametric estimation of a joint distribution function
with multivariate interval-censored data has not been considered. A current
practice is to take the midpoint of the interval (L, R) as an exact observa-
tion unless it is right censored. Then Dabrowska’s (1988) Kaplan-Meier
estimator on the plane or van der Laan’s (1996) repaired generalized maxi-
mum likelihood estimator can be applied to such data. Another practice is
to treat the right endpoints of the interval-censored data as exact observa-
tions unless they are right censored (see Samuelsen and Kongerud (1994)).
However, these two practices will introduce bias in the analysis (Samuelsen
and Kongerud (1994)).

Multivariate right-censored data are special cases of multivariate interval-
censored data. References for nonparametric estimation of distribution
functions with multivariate right-censored data can be found in Campbell
(1981), Hanley and Parnes (1983), Tsai et al. (1986), Dabrowska (1988),
Gill (1992), Prentice and Cai (1992), Lin and Ying (1993), and van der
Laan (1996), etc.

Nonparametric estimation of a distribution function with univariate
interval-censored data has been studied by Peto (1973), Turnbull (1976),
Tsai and Crowley (1985), Chang and Yang (1987), Groeneboom and
Wellner (1992), Gu and Zhang (1993), and Yu er al (1996 and 1998),
among others.

In Section 2, we discuss generalized maximum likelihood estimation of
F, based on multivariate interval-censored data and formulate the case 2
multivariate interval censorship model. We establish consistency of the
generalized maximum likelihood estimate (GMLE) of F, in Section 3 and
asymptotic normality of the GMLE in Section 4.
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2. METHOD OF ESTIMATION

Let X=(X,, .., X;) be a d-dimensional random survival vector with a
joint distribution function Fy(x), where x=(x,, .., x;). The observable
random vector is (L, Ry, ..., L4, R;), where L;< R, for all i. Suppose that

(le Ru, ey lea Rld)’ ey (Lnls R,,l, ey Lnd’ Rnd)

are iid. copies of (L, Ry, .., Ls;, R;). We want to estimate the joint
distribution function Fy(x) (or the survival function Sy(x)=
P{X;>xy, .., X;>x,}). Each univariate interval-censored data (L, R;)
can be viewed as an interval I, where

s [L;,R,] if Ly=R,,
7 ULy, Ryl if Ly<Ry;

therefore, each multivariate interval-censored observation can be viewed as
a rectangular set S,=1I;, x --- XTI, i=1,.,n

Define a maximal intersection (MI), A, with respect to the #’s to be a
nonempty finite intersection of the s such that for each i AnSF=F
or A. For example, let 4 =(0,2]x%x(1,3], A4A=(0,4]x(1,5], A=
(3,5]1x(4,8], and £ =(3,5]x(4,8]. Then the possible MI's are
(0,21 x(1,3] and (3,4] x (4, 5]. Let {4,,.., 4,,} be the collection of all
possible distinct MI’s.

Using an argument similar to Hanley and Parnes (1983), it can be
shown that the GMLE of Fy(x) which maximizes the generalized likelihood
function, A,, must assign all the probability masses sy, ..., 5, to the sets
Ay, ., A,,. Thus the generalized likelihood function is as follows:

A= T =T1| 14295, 1)

ie=1 imlLj=1

where u is the measure induced by a distribution function F, 1(-) is the
indicator function, s ( =(sy, w Sp_1))€D,, Spy=1—5;— --- —5,,_, ' is
the transpose of the vector s, and D,={s;s,20,5,+ -+ +5,,_1<1}.
Denote the GMLE of s by § and that of F, by F,.

The §/s can be obtained by the self-consistent algorithm described by
Turnbull (1976) for univariate interval-censored data as follows: Let
s =1/m for j=1,..,m Denote §,=1(4,c5). At the h-step, s{ =

n 1 (Un) (BysP D3 r_ dasy™P), j=1,..,m, h>1. Repeat until the s;s
converge. The justification of the convergence of this method for multi-
variate interval-censored data is similar to that given in Turnbull (1976) for
univariate data.
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Given a GMLE §, the GMLE of Fy(x) is not uniquely defined on an MI
unless the MI is a singleton. A GMLE of Fy(x) can be obtained as follows:

(x)= y . (2.2)

Ajc[o, x1} % -0 x[0, x4])

Remark 1. The GMLE of s may not be unique, as the following
example demonstrates.

Suppose that a sample of size 4 consists of two-dimensional interval-
censored observations (1,6,1,3), (1,6,4,6), (1,3,1,6) and (4,6,1,6).
Then the MIs are A,=(1,3]1x(1,3], 4,=(1,3]1x(4,6], 43=
(4,61x(1,3] and A4,=(4,6]1%(4,61. (51, 5,,8,,8,)=r(1/2,0,0,1/2) +
(1-7)(0,1/2,1/2,0) is a GMLE of s, for all re[0,1]. Thus there are
infinitely many expressions for GMLE. However, ug(#)=1/4, i=1, .., 4,
for all re[0,1].

In general, § may not be consistent under discrete assumptions.
However, the consistency of £, on a certain set will not be affected (for
more details, see Section 3).

The derivation of the GMLE only requires that the observations
4, ., £, are iid. To derive the asymptotic properties of the GMLE, we
need further assumptions on F, and the distribution function of
(Ll: Rl’ R Lda Rd)

A set of univariate interval-censored data are referred to as case 2 data
if they consist of strictly interval-censored, right-censored or left-censored
observations, but do not contain exact observations. For such type of data,
Groeneboom and Wellner (1992) formulate the case 2 univariate interval
censorship model. We consider a natural multivariate extension of the
case 2 univariate interval censorship model in the following.

Suppose (U;, Vi, .., Us, V) is a random censoring vector and is
independent of X. The observable random vector (L;, Ry, ... Lg R))
is generated by the following formula.

(0, Uy if X;<U,
(L;, R) =4 (U, V) if U<X, <V, i=1,..,d.
(V, +0) if X,>V,

We call this model a case 2 multivariate interval censorship model (C2M
model). In the next two sections, we shall discuss the asymptotic properties
of the GMLE under the C2M model. For ease of presentation and without
loss of generality (WLOG), we assumed d =2 hereafter.
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3. CONSISTENCY OF GMLE

In this section, we make the following assumptions under the C2M
model:

The censoring vector (U, V) is discrete. (3.1)
Let a=(ay, a,), b=(b,, b,), U=(U;, U,) and V=(V,, V,). Define
# = {(a, b): g(a, b) >0}, where g(a,b)=P(U=a, V=b),
Note that each point in & induces a grid of nine cells in R% Let
o, ={(xy, x,): x,€{a, b, +0},i=1,2,(a, b)e B}

be the set of all such grid points. We shall establish the strong consistency
of the GMLE at each point in 7. From this we can infer the uniform
strong consistency of the GMLE if F, is continuous and .7, is dense in
[0, )2

Let (X;, U, V), i=1,..,nbeiid. copies of (X, U, V). For (a, b) € 4, let

Ii(a,b)y=(—o00,a;] x{—00,a3], ., -
IZl(aa b) = (ala bl] X ( — 00, a2]’ oy oery
Ij(a,b)=(by, +0)x(—00,a5], .., Iss(a,b)=(b,, +0)X(b,, +0).

Let of be the set of all vertexes of By,.., B,, where B,, .., B, are all
possible MIs with respect to I,(a, b), i, j=1,2, 3, and (a, b) € 4. Note that
o/, is the set of vertexes of the rectangles I;(a, b)s. Thus o #. in
general. Let

1 n
N,«(a,b) = Y 1(X;el,(a,b), U=a,V,=b), Lk=1,2,3.
j=1 .
Then the generalized likelihood (2.1) is equal to

3 3
AF)=T1 I TI [ue(y(a b)) ™D,

ab) e® i=1 j=1

where

url(c,dlx (e, f1)=F(d, f)+ F(c,e)—F(c, f)—F(d,e).  (32)
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Moreover, the normalized generalized log-likelihood function is

Z(F)= Y X % Nuylab)In[ur(I,(a,b))].

(a,bed i=1 j=1
Here and below we interpret 0log0=0 and log0= —oco. For this
likelihood function, we let F range over the set #* of all functions F on
[ — o0, 4+ o0]? such that

F(+ o0, +0)=1, (3.3)
F(— 00, x)=F(x, —00)=0 for each x, (34)

and
ur(I)=0  for all rectangle sets I in (—oo0, +00]% (3.5)

In view of (3.2), 4,(F) and %,(F) depend on F only through the values of
F at the points x € &,. Because the GMLE of F, is not unique, we adopt
expression (2.2) for the GMLE in our proofs below.

THEOREM 1. Under Assumption (3.1), the GMLE F, satisfies F,(a)—
Fy(a) almost surely for all ae o,.

Proof. Verify that

L(F):=E(%(F))= ) g(ab)hy(F) (3.6)

(a,b)eR

with

3 3
hoo(F)=Y. Y ug(Iy(a b)) In[ux(I;(a,b))].
jm] j=1
Verify that the expression h, ,(F) is maximized by a function Fe #* if and
only if

/‘F(Iij(a’ b)) =/‘F0(Iij(a5 b)), i, j=1,2,3. (3.7

Equations (3.2) and (3.4) imply that (3.7) is equivalent to F(x)= Fy(x) for
each vertex x of rectangles Iy(a, b), i, j=1,2, 3. Thus F, maximizes L(F)
and any other function in & * that maximizes L(F) will coincide with F,
on .
Note that Z,(Fo) = (1/n) X7, ¥(X;, U;, V), where ¥ is the map defined
by
3

Y(x,a,b)=>Y Y 1(xely(a,b))In(ug(I;(a,b))).

j=1 jm1l
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Thus it follows from the SLLN and (3.2) that %(F,) - L(F,) almost
surely. By the definition of the GMLE, %(F,) > %,(F,). Consequently,

lim %(F,)> lim %,(F,)=L(F,)almost surely.

n-—

Let Q' denote the event on which lim,, _, ., Z(F,) >¥L(F,). Fix an we £,
let F*e & * be a limit point of ﬁ'k"( ., w) in the sense that I:"kn(a, w)— F*(a)
for all ae s/, and for some sequence {k,} of positive integers tending to
infinity. We now show that

L(F*) 2 L(F,).

Let 7, (a, b) denote the value of the random variable Y1 201 Niy(a, b) x
In[ug (Iy)] at the point w. By the definition of £,

im Y t(a,b)>E(F)

R0 (3 b)ed

Next, verify that
t(a,b) > g(a, b) h, W (F¥)

for each (a,b)e%. Note also that 7, (a,b)<0 for all (a,b)e%. From
Fatou’s Lemma,

lim z tkn(as b)= — lim Z - tk"(a’ b)

""'°°(a,b)eg n— &b e

<— Y lm (~t(ab)

(a,b)e® n-—»a
Y. gla,b) by y(F¥)
(a,b)e@

=L(F*).

Combining the above yields L(F,) <E(F*). As F, maximizes ¥, we con-
clude that E(F*)=L(F,) and therefore F*(a)= Fy(a) for all ae </, Since
w is arbitrary and ©' has probability one, the consistency result is thus
established. |]

If o, is a finite set, then it follows from the theorem that the GMLE is
uniformly strongly consistent on 7, . For arbitrary &/, the uniform strong
consistency of the GMLE requires additional assumptions.

THEOREM 2. Suppose that (3.1) holds, F, is continuous and <4, is dense
in [0, 4+ 00 )% Then supy g |F(x)— Fo(x)| = 0 almost surely.
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Proof. Let Fy, F,, ... be functions in & * such that F,(a) — Fy(a) for all
aes/,. Let M be a positive integer. Since F, is continuous, there is a grid
whlch partitions the space (—oo, +00]? into M disjoint rectangles
I=(c,d] x (e, f] with grid points (upper-right vertexes of Is) x,, ..., X, in
(=00, +00]?% and ur(I)<1/M for each gr1d cell 1. The continuity of F
and the fact that f, is dense in [0, +00)® imply that there are points
a;, .., 8, in &, such that |[Fo(a,) — Fo(x,)| < 1/M? Using this and the facts
F,, F EF* and that Fy(c, e) S Fo(x) < Fo(d, f) and F,(c,e)<F,(x)<
F,(d, f) for each x € I, we derive that

3
|F(x)— Fy(x)| < max |F,(a)—Fya)l+—, xe&°
1gisM M

This shows that F, converges to F, uniformly.

By the above, the events (Jyc., {F,(a)—> Fo(a} and {supy.q
|[F(x)— Fo(x)] -0} are identical and thus have probability 1 by
Theorem 1. ||

Remark 2. In the case of the bivariate right censorship model, under
the assumptions in Theorem 2, it is well known that the GMLE is not a
consistent estimate of a continuous F, (see Tsai et al. (1986)).

4. ASYMPTOTIC NORMALITY OF GMLE

Under the univariate case 2 interval censorship model, Groeneboom and
Wellner (1992) conjecture that if the censoring distribution is continuous,
then the GMLE of a continuous F, is not asymptotically normally dis-
tributed and the convergence rate is not in ﬁ Yu et al. (1998) prove that
if the censoring vector takes on finitely many values, then under an addi-
tional assumption the GMLE is asymptotically normally distributed and
the convergence rate is in ﬁ In the multivariate case, the situation is
more complicated. In this section we shall obtain the asymptotic normality
of the GMLE under the C2M model and the assumptions that

&/, contains finitely many elements, (4.1)
ﬂFo((al, bl] x(az, bz])>0 if a, bE.Sﬂ* and a,<b,, l=1, 2. (4.2)
and

&, = (see Section 3). (4.3)



MULTIVARIATE SURVIVAL ANALYSIS 163

Note that under the current assumptions the standard method for finite
parametric models can be used.

Remark 3. The GMLE of s may not be unique (see Remark 1) and
Theorem 1 does not ensure the consistency of the GMLE § as ./ and &,
are not the same in general. Note that the consistency of the GMLE F,on
&, is mainly due to Eq. (3.7), since &, is the set of all vertexes of the
rectangles I;(a, b)’s.

By Theorem 1 and (4.3), the GMLE F, is consistent on the set /. Since
§;=pg(4;), where the vertexes of the MI 4, belong to ., § is consistent
by (3.2).

Let 57 = up(4;). Then (4.2) yields s7> 0 for all j. Verify that (3.6) yields

LKF)= Y gab)y ¥ Xsil(4<ly(ab))

(s, b)ec iml =1 k

xIn Z 5;1(A, < Iy(a, )

-y ¥ Z[ (8, 0) Tst1(4e < La(a, ) |
k

(@ab)eR il =1

xIn ¥ 5,1(4, < I,(a, b)). (4.4)
J

Let
{I,, ... I} ={I(a,b):i, j=1,2,3, (a,b) e B},

and
pi=g(a,b) Y 5p1(A; < I,(a, b)).
k

We can rewrite (4.4) as

B m B m
L(F)= Z phln Z Sjl(Aj CIh)= Z Phln Z sjahj'
ho=1 Jj=1 Fwml J=1

From (4.2), p,>0, h=1, .., B. Set J= — E(0>*%(F,)/0s 0s*), where 0.£/0s
is an (m—1)x1 vector and 9°.%/0sds’ is an (m—1)x(m—1) matrix.
Verify that
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J=nE (65,”(}7‘0) aff(Fo)) oL

Os Js’ " 9s ds'
L (0= Onm)(Oy— 5;.m)>
= m = UU’,
<;§1 Pa (X%—10m SZ)Z (m—1)x(m—1)
where
(11— 01m) v P1 (5,91 “‘5ﬂm) V' Pg
PRt 1Sk 2 km1985%

U= . . .
(51("1—1) —01m) VP (5ﬁ(m—1) —5pm) A/ Pp

m 0 m o
Yhm1 015k k1 05k

We now show that J is nonsingular. Let x, be the upper-right vertex of
A, j=1,.,m—1 By reordering the Is, WLOG, we can assume that the
upper-right vertex of I, is equal to x,, i=1,..,m—1. Thus , n 4,= & for
j>ii=1,.., m—1. Then the matrix U has the upper triangle matrix from

v o On=0p) Vs

w . ) e
P2 (52— 0 4m) /P
U= S;"I" 62]3? Zz‘=‘ 5ﬂksz
0 0 VPm-1 . (Opom—1)=9pm) /P8
5 A+ XTI O m1ykSh Yr—10m5%

Recall s°>0 and p,>0 for i=1,..,m—1. It follows that the matrix U is

of full rank and J= UU"* is nonsingular.
It is easy to verify that

*2(F,) 02 L (F,)
Os Os* —)E< Os Os* >— -7

It thus follows that

0%(F,) _0Z(Fo)

Os Js _JAn+op(”An”)s
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where 4,, is the (m — 1)-dimensional column vector with entries §;,—s] =
ﬂpu(Ai) _ﬂFo(Ai), i= 1, ooy m— 1. Let Q" = {inf,s,,, §i= 0} . Verify that

Z(F,)

0= 4 7 except on the event Q,,

and by Theorem 1 and Assumptions (4.1) and (4.2),
P(Q,)—-0 as n— 0.

It follows from the CLT that \/; (0%(F,)/0s) is asymptotically normal
with mean 0 and dispersion matrix J. This shows that 4,=J"'x
(0Z(F,)/0s) + 0,(n~"/2). Thus we have the following result.

THEOREM 3. Under Assumptions (4.1), (4.2) and (4.3),

§1“‘S‘l'
\/; .

e o
Sm—1"Sm-1

is asymptotically normal with mean 0 and dispersion matrix J . A strongly
consistent estimator of J is given by J= —(0°%(F,)/ds 0s*). Furthermore,
\/r_z [F,(x) — Fo(x)] is asymptotically normally distributed for all x e of,. A
consistent estimate of the asymptotic variance of F,(x) is (1/n) ¢'J ¢, where
¢ is a (im—1)x1 vector with the ith entry ¢;=1(4,<=[0, x,]1x [0, x,1)
unless Fy(x)=1.

Under the assumptions in Theorem 3, the GMLE is also asymptotically
efficient. The proof of this assertion is straightforward and is omitted.
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1. INTRODUCTION

Interval-censored (IC) data are often encountered in longitudinal studies. The
most common application is in clinical relapse follow-up studies in which the study
endpoint is disease-free survival. In such a study, when a patient relapses, it is usually
known that the relapse takes place between two follow-up visits, and the exact time

to relapse is unknown. In statistics, we say relapse time is interval censored.

Let X denote a time-to-event variable. with distribution F(z) = Pr(X < z),
or equivalently, survival function S(z) = 1 — F(z). In interval censoring, X is not
observed and is known only to lie in an observable interval I with endpoints L and R.

Note that (L, R) is an extended random variables, that is, —oco < L < X < R < 00.

The simplest model for IC data is the case 1 model (see Ayer et al., 1995) in
which there is only one inspection time Y, independent of X. One observes a random
inspection time Y and observes whether X exceeds Y. Thus (L, R) is given by
(—00,Y) if X <Y, and (Y, c0) otherwise.

The case 2 model (see Groeneboom & Wellner, 1992) is another model for IC data
in which there are two inspection times U < V that are independent of X. One
observe whether an event has occurred before U, between U and V, or has not yet
occurred (in other words, after V). (L, R) is defined to be the pair of endpoints
of the interval among (—oo, U], (U, V] or (V,00) that contains X. In reality, each
individual in a study has K inspections and K varies within the study group. In the
literature, the case 2 model has often been applied to IC data by taking U and V to
be the two consecutive inspection times that X € (U, V]. This treatment violates the
independent assumption in the model, a key assumption in the consistency proof of
the generalized mle (GMLE) of F of the case 2 model (see Groeneboom & Wellner,
1992, and Yu et al., 1998).




Wellner (1995) considered a case k model in which there are k inspection times
Y; < ... < Y4, independent of X, where k is fixed. The interval among (—oo, Y],
(Y1,Ys), ...,(Ya-1, Ya],(Ys, 00) that contains X is observed, and (L, R) is defined to be
the endpoints of such an interval. Both case 1 model and case 2 model are special
cases of the case k model. However, for k > 2, few studies satisfy the formulation of
the case k model, as the number of inspection times, K, is a random variable in a

study.

To accommodate the practical situation, Schick & Yu (2000) formulated a mixed
case model, which assumes that the number of inspection times is random. The mixed
case model can be viewed as a mixture of various case k models. The model is more
realistic in practice (see, for example, the medical data in Melbye et al., 1991) and

has been used in Wellner and Zhang (2000), and van der Vaart and Wellner (2000).

Multivariate interval censoring involves d > 2 correlated X variables, each of which
is subject to interval censoring. Under multivariate interval censoring, we consider the
estimation of an underlying joint distribution function Fy of a multivariate random
vector X = (Xj,...,X4). A multivariate interval-censored observation is d pairs of
(L; 5, Ris), where the event took place within (L; s, R; 5] and 0 < L; 5 < R; 5 < oo for
each i = 1,...,n and each § = 1, ...,d. The multivariate interval-censored data can
be found in industrial life testing and medical studies. For example, in The Italian-
American Cataract Study Group (1994) we can find a set of bivariate interval-censored
eye data. These eye data are used to evaluated the usefulness of the Lens Opacities

Classification System II. Each patient in the group is followed at a six-month interval.

Wong and Yu (1999) study a case 2 multivariate IC model and establish asymptotic
properties of the GMLE of Fy. A mixed case multivariate IC model is considered in

Example 1 of van der Vaart and Wellner (2000). Theorem 10 and Example 1 in

3



van der Vaart and Wellner yield strong consistency in the L;(u)-topology of the
generalized maximum likelihood estimate of Fp, where y is a measure derived from
the joint distribution function of the inspection times. However, strong consistency
in other topologies has not been addressed in the literature. In particular, uniform
strong consistency results has not been established. They will be investigated in this
paper.

In Section 2, we introduce the multivariate mixed case model and the consistency
result in the L;(u)-topology. In fact, a proof of the consistency result in the L;(u)-
topology is constructed by one of the authors (Yu (2000)), independently of van der
Vaart and Wellner (2000). For the convenience of the reviewers of the paper, we
attach the proof in the Appendix. We present strong consistency results in other
topologies in Section 3. Details of some proofs are relegated to Section 4 for a better

presentation.

This paper is an extension of Schick & Yu (2000). As expected, the generalization
from univariate case to multivariate case is not straight forward. For instance, while
the GMLE-induced measure of each maximum intersection of the observed intervals
is unique in the univariate interval censoring, it is no longer so in the multivariate
case (Wong & Yu, 1999). A key in the consistency proof in the univariate mixed
case model is the Helly’s Selection Theorem (see Rudin, 1976), which guarantees the
pointwise convergence of a subsequence of distribution functions on R. However, for
higher dimensions R? (d > 1), Helly’s Selection Theorem (Billingsley, 1968) only gives
pointwise convergence on continuity points of the limiting function. Thus, topology
of pointwise convergence on R? is not valid. We consider the topology of pointwise
convergence on a certain countable set in R and present the consistency proof in

Section 4 that bypasses this difficulty.



2. NOTATIONS AND PRELIMINARY RESULTS

Let K = (Kj, ..., K4)' be a vector of positive random integers. Kj; stands for the
total number of inspection times related to X;, i = 1, ..., d. Throughout the paper,
we assume that E(]—[f=1 K;) < co. This assumption is mild and generally satisfied in
practice.

The multivariate mized case model is formulated as follows. Conditional on K =
(K1, ..., ka)', let the random vector Y = {Yjy,;: 6 = 1,...,d and j = 1,..., ks}, where
ks € Z* and Y5, 1 < ... < Ys4, ks are random inspection times for the J-th coordinate.
Assume that (K,Y) and X are independent. On the event {K = (ki, ..., kq)'}, let
(L,R) = (Li, Ry, ..., Lg, Ry) such that each pair (Ls, R;s) is from a univariate mixed

case model, i.e., (Ls, Rs) denotes the endpoints of the random interval among

("OO’Y:SJ%I]’ (Y:ika,hyzika,?]’ 0 (Y;s,kayka‘l’yt?,ka,k.s]v (Y&ka,ks’oo)

that contains X, where Y4, 0 = —00 and Y, x,4+1 = 00, ks € Z*.
For simplicity, assume d = 2. The proof for d > 2 is similar but much tedious.

Then, K = (ﬁ;), X = (§;),

/Y:S,l,l \

Y Y’ b Y’ bl
Y = (Yl)’ where Y5 = bnL S22 for each § = 1,2.
2 Y531 Ys32 Ys3s

\ .. )

Let M be the collection of all intervals in R. Let W be the collection of all finite

unions of rectangles, A x B, where A, B € M. Obviously W is an algebra. We now
5



define a set function induced by some function F, say up, restricted on W.

F(N+F()-F(Q)-F() i W=(abx(cd
F()H+F((*)-F({(*)) - F(® if W =]a,a] x(c,
o | O ECD =) = R o x e
F(O)+F(IN-F()-F(E) i W=(abxe]
F(E)+ F()-) ~ F(E) - F() i W= o] x [eyd]

where F(x—) = sup{F(t) : t < x}, F((%)) = sup{F((})) : t < ¢} and F((¥)) =
sup{F((%)) : t < a}. Also, the notion x <y [x < y] means z; < y; [z; < y], for all
i =1,2. Let F be the collection of all functions from R? into [0, 1] such that for each
F € F, the following are satisfied:

1. F is nondecreasing in each variable;

2. up(W) > 0 for each W € W;

3. F((X)=1land F((2))=F((") =0, forallzeR

Let (Ly, Ry), ..., (Lin, Ry) be independent copies of the pair of (L, R) as defined above.

Then define the generalized likelihood function

An(F) = HNF((Ln,l,Rq,l] X (Ly2, Ry2)), where F € F.

The normalized log-likelihood is

1 n

Ln(F) = > 10g pr((Ln, Rya] X (Lyz, Ryal).
n=1

Note that £, (F') depends on F only through the values of F' at the vertexes (iz:), (IL?Z,;)’ (}LZ;’;)
and (ﬁ:’l;) of the half-open half-closed rectangle, for n = 1,...,n. Thus there exist
non-unique maximizers of £,(F) over the set F. However, there exists a unique
maximizer F,, over F *, a subset of F containing all functions that is continuous from

above and piecewise constant with possible discontinuities only at the observed values

(IL“;';), (ﬁ:;), (f:;) and (gz::), n =1,..,n. We say that F is continuous from above
6



at x, if for each € > 0, there exists a § > 0 such that x <y < x4+ 61 (1 is the unit

vector) implies that |F(y) — F(x)| < e. We call this maximizer F,, the GMLE of F.

Define a measure y on the Borel o-field B(R?) such that for each B € B(R?),
0 00 k k1 ke Y . kl
_ _ 1 . 1,k1,2 _
=33 el (o)) R () <2l ()

k1=1ko=1 i=1 j=1 lfz’kz’j
Strong consistency in L;(u)-topology is established in the theorem below.

Theorem 2.1. [|F, — Fyldu — 0 a.s..

Recall that the assumption E(K;K,) < oo implies that for each B € B(R?),

u(B) < f: f: kyks - P{K = (:;)} = B(K,K,) < 0.

k1=1ko=1

A finite measure y is vital in providing an upper bound for the integral [ |ﬁ'n — Fy|dy,
and thus a key in the consistency proof of the GM LE in the L;(u)-topology. A proof

of Theorem 2.1 is given in Appendix.

Remark. van der Vaart and Wellner (2000, p. 133)) point out in their Example
1 that Theorem 2.1 above is a corollary of their Theorems 9 and 10. Our proof in
Appendix is different from their approach and is provided here for the convenience of

readers. It can be deleted in a future revision.

The pointwise convergence for each u-positive inspection time is obtained as a
consequence of Theorem 2.1 since u({a})|F,(a) — Fo(a)| < [ |E,, — Fy|dp for each

acR2.

Corollary 2.2. F,(a) — Fy(a) a.s. for each a that satisfies u({a}) > 0.

Let v be the sum of the measures induced by the observations. For each B €

B(R?), v(B) < 4u(B) since {(;}) € B : Ui = L; or Ri,i = 1,2} is a subset of
7




k Yig i o
Un=1 Unzt U . U {( ) — (k;), (Y;:;,) € B}. Theorem 2.1 implies strong
consistency for the topologies of weak convergence and the pointwise convergence for

each v-positive inspection time. Replace p by v, we obtain the following.

Corollary 2.3. [ |E, — Fpldv — 0 a.s..

Corollary 2.4. F,(a) — Fy(a) a.s. for each a that satisfies v({a}) > 0

3. PROPOSITIONS

Strong consistency in other topologies such as the topologies of weak convergence,
pointwise convergence and uniform convergence are established in this section as a

consequence of Theorem 2.1 with additional assumptions.

Let a, b, x be members of R2. For convenience, we adopt the following notations :

’

(al,bl) X (a2,b2) ifa<b

(a7 b) = [al,al] X (ag,bz) if a1 = b and as < by

(al,bl) X [az,az] if ap =0y and a1 < bl,
[a, b] = [al,bl] X [CLQ,bz] ifa < b,
and for a < b,
[a b) [al, b1 [ag, bg (a b] a1, b1 az, bg],
di[a,b] is the left vertical boundary [a;,a1] X [az, bs],

0, [a,b] is the right vertical boundary [b;, b1] X [az, ba],

8. [a,b] is the upper horizontal boundary [as,b1] X [bs, be],



Op [a, b] is the bottom horizontal boundary [as, ;] X [a2, a2], and
d[a,b] = 8[a,b] UB,[a,b] Ub.[a,b] U, [a,b];

Q is a square, — is a horizontal line segment and | is a vertical line segment;

(

1,1 f =0

for¥=0Q, —orl,1yg = (1,0) if U= _

\(0, 1) if =1,

Us(x) = (x,x + 1), V_5(x) = (x — d1g,x),

Wslx) = [x,x + 01g), and ¥_s(x] = (x — 61g,x] where § > 0;
and at last, Gs5(x),=5(x) and 1 4(x) are unions ¥_s(x] U ¥s[x),

for ¥ = Q, — and | respectively.

We define x to be a support point of p, if u(Gs(x)) > 0 for all § > 0. Let S, denote
the set of all support points of p. We call x a horizontal support point of u, if
p(=5(x)) > 0 for all § > 0, and let S1, denote the set of all horizontal support points
of . Similarly, we define x to be a vertical support point of p, if p(ts(x)) > 0 for
all § > 0, and let 82, to be the set of all vertical support points of u. Define x to
be a regular point of p, if u(Q_s(x]) > 0 and p(Qs[x)) > 0 for all § > 0. We say x
is strongly regular with respect to u, if x is a regular point of p and p(Q-s(x)) > 0
for all § > 0. Notice that since v < 4y, the above concepts and the propositions and
corollaries below are relevant when we replace p by v. We say that F' is continuous
on a set E, if for each x € E and each € > 0, there exits a § > 0 such that
|F(y) — F(x)| <, for all y € E with p(x,y) < 6. Here p(x,y) = 2 (2 — w)?)?,
the Euclidean distance between z and y. Let Cp, denote the set of all continuity
points of Fy. We call x a horizontal | vertical | continuity point of F, if for each

¢ > 0 there is § > 0 such that |F(y) — F(x)| < € for all y € =(x) [ ts(x)]. Let
9




Clg, [ C2r, ] denote the set of all horizontal [ vertical | continuity points of Fy. For -
convenience, we say F' is monotone if a bounded function F' is nondecreasing in each
variable. Finally, we let Zp, denote the set of points where Fp is strictly increasing,
i.e., for each x € I, and for each § > 0, Fy(x + d1) > Fy(x — 01). Now, consider
Q= {w: fp |Fu(x;w) — Fo(x)|dp(x) = 0 as n — oo}. By Theorem 2.1, P{Q,} = 1.

The strong consistency result for regular continuity points is given by the first

proposition.

Proposition 3.1. Suppose x € Cg, is a reqular point of p, then EL(x;w) = Fy(x),

for each w € Q.

The next proposition gives the weak convergence on the set of continuity points of

F, on an open rectangle or an open line segment.

Proposition 3.2. Let a < b and a # b. Then the following hold :

i. a1 = by and (a,b) C 82, imply that for each w € Q,,
Fr(x;w) — Fy(x) for allx € (a,b) NC2g,;
ii. ag = by and (a, b) C 81, imply that for each w € Q,,
Fo(x;w) = Fy(x) for allx € (a,b) NClg,;
iii. a< b and (a, b) C S, imply that for each w € (1,
Fo(x;w) — Fo(x) for allx € (a,b) NCp,.

In view of Proposition 3.2, we obtain the weak convergence of the GMLE.
Proposition 3.3. Suppose a,b € R? satisfy that Fy(a) = 0, Fo(b—) = 1 and
,upo([a, b]) = 1. Then the following hold:

i. a; = b and (a,b) C 82, imply that for each w € Q,,,

FL(x;w) — Fy(x) for all x € C2p;
10




ii. ag = by and (a,b) C 81, imply that for each w € Q,,
EL(x;w) = Fy(x) for all x € Clp,;
iii. a < b, Bb[a, b] U0, [a,b] C S81,, 0 [a, b] Uao, [a, b] C 82, and (a, b) cS,

imply that for each w € Q,, Fn(x;w) — Fy(x) for allx € Cp,.

Proposition 3.4. If every y € I, is strongly reqular with respect to p, then for each

w € O, Fr(x;w) — Fy(x) for all x € Cr,.

Combining Corollary 2.1 and the above propositions, we obtain the following corol-
laries on pointwise convergence. Proposition 3.2 yields the pointwise convergence on
an open rectangle or an open line segment. Similarly, Proposition 3.3 and Proposition

3.4 yield the pointwise convergence on the entire R? plane.

Corollary 3.5. Let a < b and a # b. Suppose one of the assumptions listed in
Proposition 8.2 is satisfied and p({y}) > 0 for each 'y € (a,b) \ Cr,. Then, for each
w € Q,, F(x;w) = Fy(x) for allx € (a,b).

Corollary 3.6. Suppose a,b € R? with Fy(a) = 0, Fo(b—) = 1 and pgp,([a,b]) =1
satisfy one of the assumptions listed in Proposition 8.8. If u({y}) > 0 for each
y € [a,b] \ Cr,, then for each w € Q,,, FL(x;w) — Fy(x) for all x € R,

Corollary 3.7. If every y € I, is strongly reqular with respect to p and p({y}) >0
for each 'y & Cg,, then for each w € Q,, FL(x;w) — Fy(x) for all x € R2.

We now state propositions on the uniform convergence on the entire R? plane and

on a closed rectangle based on the propositions and corollaries above.

Proposition 3.8. Suppose Fy is continuous. If for all a, b € R?, ug((a,b)) >0

implies u((a, b)) > 0, then the GM LE is uniformly strongly consistent, i.e.,

sup | F, (x) — Fo(x)] = 0 a.s..
x€R?
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Proposition 3.9. Suppose that for s, t € R? satisfyings <t and s # t, the following

conditions hold :

either pu({s}) > 0 or Fy(s) =0,
either u({t}) > 0 or Fy(t—) =1,

(a)

(b)

(c) Fp is continuous on [s,t], and
)

(d) for alla,b € [s,t], ur,((a,b)) > 0 implies p((a, b)) >0,
then the GM LE 1is uniformly strongly consistent on [s,t] , 1.€.,

sup |, (x) — Fo(x)| = 0 a.s..
x€ s,t]
One may wonder whether Proposition 3.9 still holds without conditions (a) and
(b). In fact, the uniform consistency results for the univariate case without these two
conditions were falsely claimed in the literature (see Schick & Yu for examples). In

Section 5, we will see that conditions (a) and (b) are essential for the proof.

4. PROOF OF PROPOSITIONS

Let Q* be the union of A* and Q?, where A* = U,cz+),” and Q? is the set of
all points in R? whose coordinates are rational. Then for each w € €, there exists
a subsequence {n'} of {n} tending to infinity such that F(x;w) — F(x;w) for all
x € Q*, where F € F. To uniquely determine the F, for each x € R? \ Q*, define
F,(x) = F(x;w) = inf{F(a;w) : a € Q* and x < a}. Since F,(;w) is a distribution
function for each n and each w, F,, is nondecreasing in each variable and bounded by

0 and 1, obviously.

Fix an w € §,. For convenience, abbreviate Fn(-;w) by F,, and F, by F. By
Theorem 2.1, lim, o [ |F, — Foldu = [|F — Foldp = 0 as.. Let D = {x € R? :

F(x) # Fy(x)}. Then, u(D) = 0. .



PROOF OF PROPOSITION 3.1 : We shall show that if xo € D is a continuity
point of Fp, then X is not regular. If Cp, N D # 0, there exists xo € Cr, N D such
that |F(xo) — Fo(xo)| = d > 0. Suppose F(xp) > Fo(xo). Since Fp is continuous
and monotone, there is a § > 0 such that |Fy(x) — Fo(xo)| < & for all x € Qs[xo).
Furthermore, | F/(x)— Fy(x)| > |F(x0) — Fo(x)| > |F(x0) — Fo(%0)| —|Fo(x) — Fo(x0)| >
4 for all x € Qs[xo) by monotone property of F. Then Qs[x0) C D with p-measure
0, i.e., Xg is not regular. Similarly, if F(xo) < Fo(Xo), then there is a 6’ > 0 such that
|Fo(x0) — Fo(x)| < £ for all x € Q_g(xo]. Thus Q_s(xo] is in D with y-measure 0,
i.e. Xg is not regular. g

PROOF OF PROPOSITION 3.2 : We shall show that if one of the assumptions is
satisfied and D contains a continuity point of Fy in (a,b), then p(D) > 0, contradict-
ing Theorem 2.1. Let D; =D N (a, b). By symmetry it suffices to verify statements

i and iii.

i. Assume a; = b; and (a,b) C 82,. Then xo € C2p N D; implies that
either |_s(xq) or ls[xo) is contained in D for some positive 4. Since xo €
(a,b) c 82,, both l5(x0) and |_s(xo) have positive y-measure, which leads
to u(Dy) > 0.

iii. Assume a < b and (a,b) C S,.. Let xg € Cr, N Dy, say |F(xo0) — Fo(xo)| =
d > 0. Since F and Fj are both monotone and (a, b) C S,. Xo is a continuity
point of Fy, there is a § > 0 such that either Q_s(x] or Qs[xq) is contained in
D. Since X, is an interior point of S,,, both Qs(x) and Q_s(xo) have positive

p-measure. This implies p(D1) > 0. n

PROOF OF PROPOSITION 3.3 : Suppose that Fy(a) = 0, Fo(b—) = 1 and
pr([a,b]) = 1, for some a,b € R? such that a < b. Let D; = [a,b] ND. 1t is

sufficient to show statements i and iii by symmetry.
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i. Let a; = b; and (a,b) C 82,.. Note that a,b € C2,. Then a ¢ D, otherwise
there is a § > 0 such that |s(a) C Dy, and thus D; has positive p-measure, a
contradiction. Also, b ¢ D;, otherwise there is a | _5(b) C Dj, and thus leads
to the contradiction y(D;) > 0. In view of Proposition 3.2, F(x) = Fy(x) for
all x € C2g, N (a,b). Since pr([a,b]) = pr,([a,b]) = 1, pr-measure and
pr,-measure of Q5(x) (§ > 0) are 0, for each x € [a, b]. This implies that for
each x € [a,b], F(y) = F(x) and Fy(y) = Fo(x), where y €— 5(x) (6 > 0).
Hence, x € C2g, N [a,b] implies that y € C2p, for all y €— 5(x) (6 > 0).
Verify that F(x) = Fy(x) = 0 for all x € R?\ [a,001) and F(x) = Fy(x) = 1
for all x € [b,o001). Therefore, F(x) = Fy(x) for all x € C2p,. |

iii. a < b and (a,b) C S,. Note that a,b € Cp,. Thus a ¢ D;, otherwise there
is Qs(a) C Dj, and thus u(D;) > 0, a contradiction. Similarly, b ¢ D;.
Notice that pg,([a,b]) = Fo(b) + Foa—) — Fo((*)) — Fo(( 1)) For each
X € (—00,a1) X [az,bs] U a1, b1] X (—00,az), Fy(x) = 0, then by the definition
of the GMLE mentioned in Section 2, F,(x) = 0 and thus F(x) = Fy(x) = 0.
Moreover, similar to step i., we obtain that
1. F(x) = Fy(x) for all x € Clg N ([($),(%)] U 8[a,b]) and for all
x € 02, 0 ([(2), ()] U a[a, b))

2. in view of Proposition 3.2, F(x) = Fp(x) for all x € (a,b) N Cr;
3. F(x) = Fy(x) =0 for all x € R? \ [a,001);

4. F(x) = Fy(x) =1 for all x € [b,001).

Thus, F(x) = Fy(x) for all x € C1z, UC2p,. n

PROOF OF PROPOSITION 3.4 : Let xq € Cr,. If xg € Zp,, then xq is strongly
regular, and hence not in D by Proposition 3.1. Now, suppose Xo € Zr,. We shall
show that xo ¢ D. Otherwise, |F(xo) — Fo(xo)| = d > 0. If F(x0) > Fo(xo), let
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x = sup{xq + 01 : Fy(xo + §1) = Fy(xo), 6 > 0}. Then x € Zg, and x = Xo + do1 for
some 6y > 0. Thus p(Q_s,(x)) > 0 by assumption. Since F(x—) > F(xo) > Fo(xo) =
Fy(x—), Q_s,(x) C D, which further implies that (D) > 0, a contradiction. On the
other hand, if Fi(xo) < Fy(Xo), let x = inf{xo — 61 : Fy(xo — 61) = Fy(x0), & > 0}.
Then x € Ig,, F(x) < F(x0) < Fo(xo) = Fy(x), Qs[x) C D for some § > 0, and
thus draw to the contradiction p(D) > 0. m

PROOF OF PROPOSITION 3.8 : We shall show D = (. Otherwise, let xo € D.
If F(x0) — Fo(xo) = d > 0, let x = sup{xo+061 : Fy(x0+61) = Fy(xo), 6 > 0}. Then
x € Tg,. Since Fy is continuous, there is a positive d such that Fy(x+dp1)—Fo(x) < g
Then pg,((x,x + do1)) > 0 and (x,x + &1) C D, which imply that u(D) > 0,
contradicting Theorem 2.1. The same contradiction can be reached similarly for the

case F(xo) — Fo(xo) = d < 0. Thus D = 0§ and F, pointwisely converges to Fp.

Let € > 0 and x; € R?. By continuity and monotonicity of Fy, we can choose
finitely many quantiles {ao, ai, ..., an} and {bo,bs,...,bs} such that ag = by = —o0,
Fo((%)) = Fo((*2')) < e for each i = 1,..,,a, and Fo((‘;;’)) - Fo((b::)) < ¢ for
each 7 = 1,...,4. Then there exists N such that |Fn((2‘;)) - Fo((‘;;))| < € for all
i=0,.,0,j=0,.,0 and all n > N. Note that xo € ((*}, (}***)] for some 3, j.

bj /7 \bjt1

Then |Fy(y) — Fo(xo)| < eforally € ((‘;J’), (#+1)]. Moreover,

bj+1

(o) - A1 G -l 1 572 ol
#17ut) — B (5 D1+ 1R ) -l ()

< 4¢, where n,m > N.
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Combining with the monotonicity of Fy, we obtain

|Fn(%0) — Frn(%o0)|

< 1Eut) - A (N1 (5)) = B (I 1 (72 = o)

bj bj+1

<) -G R - ()
() - ()

< 12, for all n,m > N. (4.1)

Since x, arbitrary, F, converges uniformly to Fy on R?. g

PROOF OF PROPOSITION 3.9: WLOG, assume s < t. First consider the case
when p({s}) > 0 and Fy(t—) = 1. By Corollary 2.2, F(s) = Fo(s). If Fy(s) = 1, we
are done. Now, assume Fp(s) < 1. We shall show D; = DN [s,t] = 0 in three steps.

(1) t ¢ D;. Otherwise, Fy(t) — Fi(t) = d > 0 as Fyo(t—) = 1. Since Fy(s) < 1,
if we let x = inf{6t + (1 — &)s : Fo(t) = Fo(6t + (1 — d)s),d > 0} then x is either
t or a member of (s,t). Also, x € Ig,. By continuity of Fy, if x = t then for
some § > 0, 6t + (1 — &)s € (s,t) and 0 < Fy(t) — Fo(6t + (1 — 8)s) < §, which
leads to a contradiction that D; contains Q_s(t) with positive u-measure; otherwise, if
x € (s,t), there also exits § > 0 such that |Fo(y)—Fo(t)| < dforally € (x—01,x) C

(s, t), and thus Gs(x) with positive y-measure is in D;, a contradiction.

(2) 8[s,t] N Dy = 6. Otherwise, let xo € D1 N I([s, t].

Suppose xo € D138, [s, t]. If F(xo) > Fy(xo), let x = sup{xo+ () : Fo(xo+ @) =
Fy(xo),6 > 0}, then the continuity of Fy implies that x € 9, [s, t] \ {t} and Fyp(x) < 1.
This fact combining with Condition (d) yields that there exists a > 0 such that

—5(x) has positive y-measure and is a subset of D;, a contradiction.
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Now assume Fp(xo) > F(x%o). Let x = inf{xo — (g) : Fy(xo — (g)) = Fy(xp),6 > 0}.
Then either x = (§) or x € du[s,t] \ {(2})}. In the first case, there exists a 6 > 0
such that 0 < Fy(x) — Fo(x — (3)) < ¢ and t _5(x) is contained in & [s,t] \ {s}
since Fy(xo) > F(xg) > F(s) = Fo(s). Then t _s(x) has positive y-measure and
is contained in D;. In the second case, there exists a subset of D; with positive

p-measure, namely, -—_s(x) for some ¢ > 0, a contradiction.

Similarly, if xo € D; is contained in some other boundary of [s, t], we can show

the same contradiction. Hence 8[s,t] \ {t} is not in D;.

(8) In view of the first part in the proof of Proposition 3.8, D1 N (s,t) = 0,
otherwise, we can find x € Zp, such that x € (s,t) and construct an open square

around it with positive u-measure that is also contained in D;.

For other cases arisen from Condition (a) and (b), similar argument as (1) - (3)

above will lead to a contradiction if D; # 0.

Now, we have shown that F,, converges pointwisely to Fp in [s, t]. By assumption,
F, is continuous on the bounded close set [s, t] . Let e > 0. Similar to the second part
in the proof of Proposition 3.8, we can select finitely many quantiles {ag, a1, ..., 4o}
such that ay = s1, aq - ty and Fo(($¥)) — Fo((*;?)) < eforalli=1,..,a, and
quantiles {bg, b1, ..., bg} such that by = s3, bg = t2 and Fg((:);)) — Fo((b;il)) < e for all
j =1,...,8. Then there exist N > 0 satisfying |Fn((§;)) —Fo((g;))| < eforalln > N,
and for all 1 = 0,...,ac and j = 0,..., 8. For each x¢ € [s,t], X € [(Z;), (Z;Ii)] for

some i, j. Thus, |F,(xo) — Fin(%0)| < 12¢ for all n,m > N by an argument similar to

(4.1). Since e is arbitrary, we obtain the uniform convergence in the closed rectangle

[s,t]. n
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5. APPENDIX: PROOF OF THEOREM 2.1

A proof of Theorem 2.1 when d = 2 is given in Example 1 of van der Vaart
and Wellner (2000). For readers who are difficult to find their paper, we present a
different proof of the theorem, which is in Yu (2000). Let £(F) = E(log pr((L1, Ri] X
(Ls, Ry))). Notice that £,(F) — L(F') almost surely as n — oo by the strong law of
large numbers (SLLN). We can further write

L(F) = i i P{K =k} - E(hpx(Y) | K = k), where

k1=1ko=1

kl kz
k
k= (é) and hrx(y) = Z Z F (Y1 er s Y1 er it 1] X (V2,50 Y2,k,541))"

i=0 =0
<108 7 (Y181 ,6> Ytk 1) X (Y2,k055 Y2 b,5+1])
for — 00 = Ysks0 < Ysks1 < oo < Ysiksks < Ysksks+1 = 00,6 =1,2.

Define 0log 0 = 0 and log 0 = —o0 so that the above make sense. Since ;> si; Int;;
is a concave function in the probability vector (t11,...,) where .. ¢;; = 1 and (s11, -..)
is also a probability vector,

hrx(y) has a maximizer F' € F if and only if F' satisfies that (5.1)

17 (Y100 Yk it1) X (Y2 Yorkani1]) = BB (YLks i Yikrit1) X (Y2k0,5 Y2k,i+1))s

wherei =0, ...,k; and j = 0, ..., ks, for each array of real numbers ysx;1 < .- < Ys,ks,k5>
and for each vector of positive integers k. Also, |£(Fp)| is bounded by 4E(K;K>),
since |hg, x| < (k1 + 1)(kz + 1) in light of the fact that sup{laloga|: 0 <a <1} < 1.
This implies that |£(Fp)| is finite. Thus,

Fy maximizes L(:) over the set F, and
if F € F maximizes £(-) then |F(x) — Fo(x)| du(x) =0. (5.2)
R2
The second statement of (5.2) follows from (5.1).
Let 7% = {(li,r1,le,m0) = (C2) < (’1) < (M) < (%)} We will construct a

countable collection U of Borel s_uof)set—; ofl%T“.— Leggp be an arbitrary positive integer.
We first select marginal “quantiles” such that
—oo=ay<..<ay,, =00,
and for each i = 1, ..., 7,1, #((—00,7] X [~00,00]) < i277"! forallz < a; ,
and p((—00,y] x [~00,00]) > 277! forall y > a;.
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The selection of a;’s guarantees that p((a;_1,a;) X [—00,00]) < 27771, Similarly,

take —00 = by < ... < b,,, = 00 80 that p([—00,00] X (bj_1,b;)) < 277~ for each
j =1,...,%.:. Since 1(R?) < E(K1K3) < 00, 7,1 and 7,2 are both finite. In fact,
Yoi < p(R2)2°+1) j =1,2. Then we let V, = {g0,--dp8,} be the ordered set of all
distinct values of {ao,..., @y, 1, b0, -, by,,}- Verify that p((gi-1,9p:) X [—00,00]) <
277~ and p([—00,00] X (@pj-1,p;)) < 271, where 4,5 = 1, ..., B,. For convenience,
let

Sp,i,j = (Qp,'i—laqp,i] X (qp,j—laqp,j] \ {(ZP#) }) where Z)J = 17 "')ﬁp'

pii
Notice fs(Sp,3) < 1((Gp,i—1, gpyi) X (=00, 00])+((—00,00] X (gp,j-1, gp3)) < 27°. Define
sets V0, ..., Vp2g, such that V,,5;_; is the open interval (g,-1,¢,:) foreachi =1,..., B,
and V,,; is [¢,,4,4p,] for each j = 0,..., B,. Let W, ; =V, i XV, 5, fori,5 =0, ...,20,.
Finally, let Y = U, U,, where U, is the collection of all nonempty sets of the form
Upij = Wiy X Wi i) NTH, for 0 <4y < 53 <26, and 0 < 4 < o < 26,

Let Q* be the union of A* and Q?, where A* = U,ez+),’° and Q? is the set of
all points in R? whose coordinates are rational. Then for each w € (2, there exists
a subsequence {n'} of {n} tending to infinity such that F(x;w) = F(x;w) for all
x € Q*, where F € F. To uniquely determine the F, for each x € R? \ Q*, define
F,(x) = F(x;w) = inf{F(a;w) : a € Q* and x < a}. Since F,(-;w) is a distribution
function for each n and each w, F,, is nondecreasing in each variable and bounded by
0 and 1, obviously. Furthermore, ur,(W) has nonnegative value for each W € W (an
algebra of R? defined in Section 2), and thus, up, is a measure induced by F,, and
F,, is a member of F. Fix an w € ). Let € > 0. Note that if x is a continuity point of
F,,, then there exist q;,qs € Q? such that q; < x < qz and F(x;w) — € < F(qi;w) <
F(qo;w) < F(x;w) + €. For each n, we have F,(qi;w) < Fh(xw) < Fy(qo;w).
Then, F(x;w) — € < liminf, F,(x;w) < limsup,, Fy(x;w) < F(x;w) + €. Since € is
arbitrary, F(x;w) = lim, F(x;w). Let

D, = {x € R? : | limsup F, (x;w) — F(x;w)| V llimlinfﬁ'n:(x; w) — F(x;w)| > 0},

then D, does not contain any continuity point of F,. If x € D,, verify that one of
the following must be true:

L. pr,({x}) >0,
2. x is a horizontal continuity points of F,, (as defined in Section 3),

3. x is a vertical continuity point of F,,.

Let D;,, be the set of all points in D, satisfying the ith condition above. Then
D, = D1, UDy, UDs,. We shall show next that u(D,,) = 0.

1. Suppose Dy, # 0. If x € Dy, then x ¢ A* by the definition of F,,. For each
positive integer p, x € S,;, ;, for some i, and j,, and
p({x}) < u(Spi,5,) <277 =3 0.

Since pr, is a finite measure, there are at most countably many elements in
D1 w, 80 w(D1y,) = 0.
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2. Suppose D,, # 0. By monotonicity of F,, in each variable, there exists
(a, b) C D, such that the second coordinates of a and b are the same,
ur,((a,b)) > 0 and (a,b) N A* = . Note that (a,b) is fixed here. For
each p, (a, b) is contained either in (g,;,-1,gp,,) X [—00, 00] or in [—o00, 00] X
(p,j,~11Gp,j,) for some i, or j,. Either way, as p — o0,

/’LFw((aa b)) < /L((Qp,ip——la qP,ip) X [—OO, OO]) ,+ p’([—w’ OO] X (QPy.'ip—l’ qP»J'p))
<277 —0.

The above implies that p(Ds,,) = 0 as there are at most countably many such
(a,b)’s in Dy, by the boundedness of the measure .
3. Suppose D3, # 0. By symmetry of Dy, p(Ds.) = 0.

The above implies that lim, F(x;w) = F(x;w) except on a set with y-measure 0.
Hence, for each w € 2,

lim |Fry (x5 w) — F(x;w)|dp(x) = 0. (5.3)

n'—o00 Jp2

Let ., denote the empirical estimator of Q, the distribution of (L, R). By SLLN,
Qu = {w : Qn(U;w) = Q(U)} has probability 1 for each Borel subset U of 7%, so does
Q= {w: L,(Fo;w) — L(Fy)}. Hence, O* = Q' N(Nyeuly) has probability 1. Let w*
be a member of Q*. To simplify the notations in this proof, let F' denote the function
defined by F(x) = F(x;w*), F, the GMLE of the distribution function defined by
F,(x) = F,(x;w"), where x € R?, and Q,, the empirical distribution function defined
by Qn(U) = Qn(U;w*), where U is a member of the Borel o-field B(7*). Without
loss of generality (WLOG), assume {n'} = {n}. Obviously L(F) < L(Fp). Also,
L(Fy) < liminf, ;o0 Ln(Fn;w*), because L, (Fo;w*) < L,(Fr;w*) by the definition of
the GMLE, and the fact that £,(Fy;w*) — L(Fp) by the choice of w*. If we can
show that

lim sup L, (Fp;w*) < L(F) (5.4)
n—oo
then L(Fp) < L(F). This will further conclude that Q° = {w : L(Fy) = L(F(;w))}
contains * by the arbitrary choice of w*, and thus has probability 1. In addition,

lim sup/ | By (x;w) — Fo(x)| du(x) =0, for each w € Q°,
n—o0o R2

in view of (5.2) and (5.3), thus the theorem is proved. Notice that

Ln(Fo;w*) = [rilog pr, ((1,t])dQn((1, 1)), where (1, r) denotes the vector (1,71, l2,72)".

The needed inequality (5.4) can be written as
imsup [ 1o ur, (L11)dQn(0,5) < [ logur((1e)d@(GE).  (65)
n—+00 4 4
We now show that (5.5) holds for each w* € Q*. Fix a positive integer p and a

negative integer p. Remember that every element in U, can be written as U o(3),(%)
i "2 bl j2
22




or Vyiy X Vijy X Vjiy X V5 for some (() < ( !). Then the following is immediate.

/ log pr,((Lr]) d@n((1,r)) S/ oVlog pr,((Lr]) d@Qn((L1))
T4 T4
<) M,(U) Qu(U),

Uel,

where M, (U) = sup{o V log pr,((1,r]) : (1, r) € U} and U is the closure of U. For
any U in U, let

ryiT =sup{r;: (,x) € U}, ry;~ =inf{r;: (},r) € U},

ly;" =sup{l; : (,r) € U} and ly;~ = inf{l;: (,r) € U}, wherei =1,2.

Let (l I']U lUl ,TU1+] X (lU2 yTU2 ] and (l I‘]U (lU,1+,’I”U,1—] X (lU,2+;rU,2—]
for convenience. It can be shown that M,(U) < oV log ur, ((L,r] U+). Thus,

M (U) = M(U) = oV (ls?gﬁlogup((l,r]) <oViogur((Lr],").  (5.6)

By the choice of w*, @,(U) — Q(U). Hence, EUGL{ H(0)Qn(U) — ZUGLI MU)Q(U).
Let m,(U) = inf{o Vlog ur,((1,r]) : (I,r) € U}. Similarly, we obtain the following:

m(U) = m(U) = oV (lirl)lgl_]logup((l, r]) > oViogur((Lr],”)  (5.7)
and 3y Mn(U)@n(U) = Yy, m(U)Q(U). Verify

M(U) —m(U) < oV log ur((1, r] —oVilogpp((l,r],”) (by (5.6) and (5.7))

<ee. [,uF((l,r]U — pr((l, r] )], where U € U,.

If L; or Ly belongs to (g,-1,g,,) for some i = 1,..., B,, then pr((1, r]UJr —pr((Lr],”

can be expressed as the sum of at most 32 — 1 p-measures of the rectangles whose p—
measures are no more than the p-measures of the rectangles of the form (g,;—1, Qp,i ) X
(—00,00] or (—o00,00] X (gpi-1,9p), wWhere i = 1,..,8,. For instance, given
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FIGURE 1. up((1,41]) — ur((21,31]) = 35, pr(4:)

Note: For convenience, let qui,—1 = Qpis—1 =1, Qpsi; = Qpin = 2,

Qpji—1 = dpja—1 =3 and gpj; = G, = 4-

A6 A7 A8
3 —
A4 A5
2
A1 A2 A3
L T R ST,
1 2 3 4

U= (QP,il—lan,h) X (Qp,iz—I,Qp,iz) X (QP,jl—h‘IP,J'l) X (qP,jz—th,J'z)’

pr((Lr], ) = ur((Lr], ")
L(Co R (Ea )RR (e B ()
o G | R (Gl NS (G B ()

8
= Z pr(A;) as illustrated in Figure 1.
i=1

Thus if Ly or Lo belongs to (g,-1, gp,) for some ¢ = 1,..., B,, then M(U) —m(U) > §p

implies that at least one of the rectangles S,; ;, 7 = 1, ..., B,, has up-measure exceeding

e?/p. Similarly, if R; or R, is in an interval (g, j_1,,,;) for some j = 1, ..., 3,, then

the same implication is true for at least one of the rectangles S,;;, i =1,...,6,. f U
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contains only one point, then M(U) — m(U) = 0. It follows that

> (MU) —m(U))QU)

Ueu,,

ZQ {M(U) —m(U) < = }+|9|ZQ JI{M(U) — m(U)

Ueu,, Uel,

B

g & ’

<2+l Y P{gpi1 < L1 <53} Y H{pe(Sps5) > €2/}
i=1 j=1

Be Bp
+ o Z P{gpi-1 < Lz < gy} Z H{pr(Spis) > €/p}

ﬂp

+lol >~ P{gps1 < Ry < g5} ZI{uF(S i) > €¢/p}
Jj=1 i=1
Bp Bo

+1el Y P{pi-1 < By < g5} D Hup(S,i5) > €2/p)

Jj=1 i=1

8
>_
s

(5.8)

Notice that uF(R2) is bounded by 1, so there are no more than pe=2+ 1 terms of the

form pp(S,; ,]) j=1,..0, exceedlng e?/p. Furthermore,

Z[P {9pi-1 < Lj < gps} + P{gpi1 < B; < gy}]
i=1

< 26((9pi-1, gpii) X [—00,00]) + 2([—00, 0] X (gpsi—1,Gps))
<4.27P71 =9l
Then, (5.8) can be rewritten as
> (MU) - mU)QU) < S + fol2#(pee + 1)
veu, p

Therefore, (5.5) follows from the following inequality.

tmeup | log i, ((1,1])dQu((11)

n—o0

< / o Vlog pp((L,r])dQ((1,1)) + L o277 (pe™@ + 1)
s P

p—00

s / oV log ur((1,1])dQ((L, 1))
7"4

OO

’b

log ur((1,7])dQ((Lx))
T4
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